Jean-Marc Adamo
Data Mining for Association Rules and Sequential Patterns (eBook, PDF)
Sequential and Parallel Algorithms
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
72,95 €
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
36 °P sammeln
Jean-Marc Adamo
Data Mining for Association Rules and Sequential Patterns (eBook, PDF)
Sequential and Parallel Algorithms
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A state-of-the-art monograph on essential algorithms used for sophisticated data mining methods used with large-scale databases. Essential book for practitioners and professionals in computer science and computer engineering.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.23MB
Andere Kunden interessierten sich auch für
Aris Gkoulalas-DivanisAssociation Rule Hiding for Data Mining (eBook, PDF)72,95 €
Wei WangMining Sequential Patterns from Large Data Sets (eBook, PDF)72,95 €
Advanced Methods for Knowledge Discovery from Complex Data (eBook, PDF)112,95 €
Artificial Immune Systems (eBook, PDF)40,95 €
Amnon MeiselsDistributed Search by Constrained Agents (eBook, PDF)72,95 €
Jaideep VaidyaPrivacy Preserving Data Mining (eBook, PDF)72,95 €
Statistical Learning and Data Sciences (eBook, PDF)40,95 €-
-
-
A state-of-the-art monograph on essential algorithms used for sophisticated data mining methods used with large-scale databases. Essential book for practitioners and professionals in computer science and computer engineering.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 254
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461300854
- Artikelnr.: 43987592
- Verlag: Springer US
- Seitenzahl: 254
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461300854
- Artikelnr.: 43987592
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Introduction.- 2. Search Space Partition-Based Rule Mining.- 2.1 Problem Statement.- 2.2 Search Space.- 2.3 Splitting Procedure.- 2.4 Enumerating ?-Frequent Attribute Sets (cass).- 2.5 Sequential Enumeration Procedure.- 2.6 Parallel Enumeration Procedure.- 2.7 Generating the Association Rules.- 3. Apriori and Other Algorithms.- 3.1 Early Algorithms.- 3.2 The Apriori Algorithms.- 3.3 Direct Hashing and Pruning.- 3.4 Dynamic Set Counting.- 4. Mining for Rules over Attribute Taxonomies.- 4.1 Association Rules over Taxonomies.- 4.2 Problem Statement and Algorithms.- 4.3 Pruning Uninteresting Rules.- 5. Constraint-Based Rule Mining.- 5.1 Boolean Constraints.- 5.2 Prime Implicants.- 5.3 Problem Statement and Algorithms.- 6. Data Partition-Based Rule Mining.- 6.1 Data Partitioning.- 6.2 cas Enumeration with Partitioned Data.- 7. Mining for Rules with Categorical and Metric Attributes.- 7.1 Interval Systems and Quantitative Rules.- 7.2 k-Partial Completeness.- 7.3 Pruning Uninteresting Rules.- 7.4 Enumeration Algorithms.- 8. Optimizing Rules with Quantitative Attributes.- 8.1 Solving 1-1-Type Rule Optimization Problems.- 8.2 Solving d-1-Type Rule Optimization Problems.- 8.3 Solving 1-q-Type Rule Optimization Problems.- 8.4 Solving d-q-Type Rule Optimization Problems.- 9. Beyond Support-Confidence Framework.- 9.1 A Criticism of the Support-Confidence Framework.- 9.2 Conviction.- 9.3 Pruning Conviction-Based Rules.- 9.4 One-Step Association Rule Mining.- 9.6 Refining Conviction: Association Rule Intensity.- 10. Search Space Partition-Based Sequential Pattern Mining.- 10.1 Problem Statement.- 10.2 Search Space.- 10.3 Splitting the Search Space.- 10.4 Splitting Procedure.- 10.5 Sequence Enumeration.- Appendix 1. Chernoff Bounds.- Appendix 2. Partitioning in Figure 10.5: Beyond3rd Power.- Appendix 3. Partitioning in Figure 10.6: Beyond 3rd Power.- References.
1. Introduction.- 2. Search Space Partition-Based Rule Mining.- 2.1 Problem Statement.- 2.2 Search Space.- 2.3 Splitting Procedure.- 2.4 Enumerating ?-Frequent Attribute Sets (cass).- 2.5 Sequential Enumeration Procedure.- 2.6 Parallel Enumeration Procedure.- 2.7 Generating the Association Rules.- 3. Apriori and Other Algorithms.- 3.1 Early Algorithms.- 3.2 The Apriori Algorithms.- 3.3 Direct Hashing and Pruning.- 3.4 Dynamic Set Counting.- 4. Mining for Rules over Attribute Taxonomies.- 4.1 Association Rules over Taxonomies.- 4.2 Problem Statement and Algorithms.- 4.3 Pruning Uninteresting Rules.- 5. Constraint-Based Rule Mining.- 5.1 Boolean Constraints.- 5.2 Prime Implicants.- 5.3 Problem Statement and Algorithms.- 6. Data Partition-Based Rule Mining.- 6.1 Data Partitioning.- 6.2 cas Enumeration with Partitioned Data.- 7. Mining for Rules with Categorical and Metric Attributes.- 7.1 Interval Systems and Quantitative Rules.- 7.2 k-Partial Completeness.- 7.3 Pruning Uninteresting Rules.- 7.4 Enumeration Algorithms.- 8. Optimizing Rules with Quantitative Attributes.- 8.1 Solving 1-1-Type Rule Optimization Problems.- 8.2 Solving d-1-Type Rule Optimization Problems.- 8.3 Solving 1-q-Type Rule Optimization Problems.- 8.4 Solving d-q-Type Rule Optimization Problems.- 9. Beyond Support-Confidence Framework.- 9.1 A Criticism of the Support-Confidence Framework.- 9.2 Conviction.- 9.3 Pruning Conviction-Based Rules.- 9.4 One-Step Association Rule Mining.- 9.6 Refining Conviction: Association Rule Intensity.- 10. Search Space Partition-Based Sequential Pattern Mining.- 10.1 Problem Statement.- 10.2 Search Space.- 10.3 Splitting the Search Space.- 10.4 Splitting Procedure.- 10.5 Sequence Enumeration.- Appendix 1. Chernoff Bounds.- Appendix 2. Partitioning in Figure 10.5: Beyond3rd Power.- Appendix 3. Partitioning in Figure 10.6: Beyond 3rd Power.- References.







