Data Science and Machine Learning (eBook, PDF)
21st Australasian Conference, AusDM 2023, Auckland, New Zealand, December 11-13, 2023, Proceedings
Redaktion: Benavides-Prado, Diana; Koh, Yun Sing; Boo, Yee Ling; Fournier-Viger, Philippe; Erfani, Sarah
57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
57,95 €
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
Data Science and Machine Learning (eBook, PDF)
21st Australasian Conference, AusDM 2023, Auckland, New Zealand, December 11-13, 2023, Proceedings
Redaktion: Benavides-Prado, Diana; Koh, Yun Sing; Boo, Yee Ling; Fournier-Viger, Philippe; Erfani, Sarah
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the proceedings of the 21st Australasian Conference on Data Science and Machine Learning, AusDM 2023, held in Auckland, New Zealand, during December 11-13, 2023. The 20 full papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: research track and application track. They deal with topics around data science and machine learning in everyday life.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 25.63MB
Andere Kunden interessierten sich auch für
- Data Mining (eBook, PDF)61,95 €
- Big Data (eBook, PDF)53,95 €
- Big Data (eBook, PDF)57,95 €
- Advanced Data Mining and Applications (eBook, PDF)65,95 €
- Computational Intelligence in Data Science (eBook, PDF)40,95 €
- Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (eBook, PDF)40,95 €
- Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence (eBook, PDF)40,95 €
-
-
-
This book constitutes the proceedings of the 21st Australasian Conference on Data Science and Machine Learning, AusDM 2023, held in Auckland, New Zealand, during December 11-13, 2023.
The 20 full papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: research track and application track. They deal with topics around data science and machine learning in everyday life.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 300
- Erscheinungstermin: 4. Dezember 2023
- Englisch
- ISBN-13: 9789819986965
- Artikelnr.: 69699316
- Verlag: Springer Nature Singapore
- Seitenzahl: 300
- Erscheinungstermin: 4. Dezember 2023
- Englisch
- ISBN-13: 9789819986965
- Artikelnr.: 69699316
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Research Track: Random Padding Data Augmentation.- Unsupervised Fraud Detection on Sparse Rating Networks.- Semi-Supervised Model-Based Clustering for Ordinal Data.- Damage GAN: A Generative Model for Imbalanced Data.- Text-Conditioned Graph Generation Using Discrete Graph Variational Autoencoders.- Boosting QA Performance through SA-Net and AA-Net with the Read+Verify Framework.- Anomaly Detection Algorithms: Comparative Analysis and Explainability Perspectives.- Towards Fairness and Privacy: A Novel Data Pre-processing Optimization Framework for Non-binary Protected Attributes.- MStoCast: Multimodal Deep Network for Stock Market Forecast..- Few Shot and Transfer Learning with Manifold Distributed Datasets.- Mitigating The Adverse Effects of Long-tailed Data on Deep Learning Models.- Shapley Value Based Feature Selection to Improve Generalization of Genetic Programming for High-Dimensional Symbolic Regression.- Hybrid Models for Predicting Cryptocurrency Price Using Financial and Non-Financial Indicators.- Application Track: Multi-Dimensional Data Visualization for Analyzing Materials.- Law in Order: An Open Legal Citation Network for New Zealand.- Enhancing Resource Allocation in IT Projects: The Potentials of Deep Learning-Based Recommendation Systems and Data-Driven Approaches.- A Comparison of One-Class versus Two-Class Machine Learning Models for Wildfire Prediction in California.- Skin Cancer Detection with Multimodal Data: A Feature Selection Approach Using Genetic Programming.- Comparison of Interpolation Techniques for Prolonged Exposure Estimation: A Case Study on Seven years of Daily Nitrogen Oxide in Greater Sydney.- Detecting Asthma Presentations from Emergency Department Notes:An Active Learning Approach.
Research Track: Random Padding Data Augmentation.- Unsupervised Fraud Detection on Sparse Rating Networks.- Semi-Supervised Model-Based Clustering for Ordinal Data.- Damage GAN: A Generative Model for Imbalanced Data.- Text-Conditioned Graph Generation Using Discrete Graph Variational Autoencoders.- Boosting QA Performance through SA-Net and AA-Net with the Read+Verify Framework.- Anomaly Detection Algorithms: Comparative Analysis and Explainability Perspectives.- Towards Fairness and Privacy: A Novel Data Pre-processing Optimization Framework for Non-binary Protected Attributes.- MStoCast: Multimodal Deep Network for Stock Market Forecast..- Few Shot and Transfer Learning with Manifold Distributed Datasets.- Mitigating The Adverse Effects of Long-tailed Data on Deep Learning Models.- Shapley Value Based Feature Selection to Improve Generalization of Genetic Programming for High-Dimensional Symbolic Regression.- Hybrid Models for Predicting Cryptocurrency Price Using Financial and Non-Financial Indicators.- Application Track: Multi-Dimensional Data Visualization for Analyzing Materials.- Law in Order: An Open Legal Citation Network for New Zealand.- Enhancing Resource Allocation in IT Projects: The Potentials of Deep Learning-Based Recommendation Systems and Data-Driven Approaches.- A Comparison of One-Class versus Two-Class Machine Learning Models for Wildfire Prediction in California.- Skin Cancer Detection with Multimodal Data: A Feature Selection Approach Using Genetic Programming.- Comparison of Interpolation Techniques for Prolonged Exposure Estimation: A Case Study on Seven years of Daily Nitrogen Oxide in Greater Sydney.- Detecting Asthma Presentations from Emergency Department Notes:An Active Learning Approach.