The book-
- Provides a systematic approach for understanding data science techniques
- Explain why machine learning techniques are able to cross-cut several disciplines.
- Covers topics including statistics, linear algebra and optimization from a data science perspective.
- Provides multiple examples to explain the underlying ideas in machine learning algorithms
- Describes several contemporary machine learning algorithms
The textbook is primarily written for undergraduate and senior undergraduate students in different engineering disciplines including chemical engineering, mechanical engineering, electrical engineering, electronics and communications engineering for courses on data science, machine learning and artificial intelligence.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.