Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics 2025 Redaktion: Matarazzo, Thomas; Downey, Austin; Tronci, Eleonora Maria; Hemez, François
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir dir den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Data Science in Engineering, Vol. 11 (eBook, PDF)
Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics 2025 Redaktion: Matarazzo, Thomas; Downey, Austin; Tronci, Eleonora Maria; Hemez, François
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Data Science in Engineering, Volume 11: Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics, 2025 , the eleventh volume of twelve from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-Driven Analysis Methods | AI-Driven Digital Twins for Structural Modeling and Dynamic Characterization | Transfer Learning and Population Based Monitoring | Data-Driven Techniques…mehr
Data Science in Engineering, Volume 11: Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics, 2025, the eleventh volume of twelve from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:
Novel Data-Driven Analysis Methods
AI-Driven Digital Twins for Structural Modeling and Dynamic Characterization
Transfer Learning and Population Based Monitoring
Data-Driven Techniques for System Prognostics and Health Monitoring
Applications of AI in Structural Dynamics and System Identification
Uncertainty Quantification in Data-Driven and Hybrid Models
Advanced Techniques for Real-Time Monitoring and Predictive Analysis
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Thomas Matarazzo, François Hemez, Eleonora Maria Tronci, Austin Downey
Inhaltsangabe
1. Data-Driven Method for Reduced Order Modeling of Blisks with Large and Small Mistuning 2. System Identification of Data from Rotating Machinery Using Deep Learning Network Training 3. Towards PEAR: a Benchmark Dataset for Population-based SHM 4. The Use of Machine Learning in Improved Hydrostatic Load Prediction for Inland Waterways Navigation Infrastructure 5. Experimental Analysis to Enable Low-Latency Structural Health Monitoring for Electronics in High-Rate Dynamic Environments 6. Fast-TDA Implementation for High Rate Dynamic Systems in Noisy Environment and Introduction to Chaotic System
1. Data-Driven Method for Reduced Order Modeling of Blisks with Large and Small Mistuning 2. System Identification of Data from Rotating Machinery Using Deep Learning Network Training 3. Towards PEAR: a Benchmark Dataset for Population-based SHM 4. The Use of Machine Learning in Improved Hydrostatic Load Prediction for Inland Waterways Navigation Infrastructure 5. Experimental Analysis to Enable Low-Latency Structural Health Monitoring for Electronics in High-Rate Dynamic Environments 6. Fast-TDA Implementation for High Rate Dynamic Systems in Noisy Environment and Introduction to Chaotic System
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826