Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume constitutes the refereed proceedings of the 7th International Workshop on AI System Engineering: Math, Modelling and Software, AISys 2025 and the First International Workshop on Optimisation of Industrial Production with AI Algorithms, AI4IP, co-located with the 36th International Conference on Database and Expert Systems Applications, DEXA 2025, which took place in Bangkok, Thailand, during August 25-27, 2025. The 11 full papers were thoroughly reviewed and selected from a total of 23 submissions. They are organized in topical sections as follows: AI System Engineering: Math,…mehr
This volume constitutes the refereed proceedings of the 7th International Workshop on AI System Engineering: Math, Modelling and Software, AISys 2025 and the First International Workshop on Optimisation of Industrial Production with AI Algorithms, AI4IP, co-located with the 36th International Conference on Database and Expert Systems Applications, DEXA 2025, which took place in Bangkok, Thailand, during August 25-27, 2025. The 11 full papers were thoroughly reviewed and selected from a total of 23 submissions. They are organized in topical sections as follows: AI System Engineering: Math, Modelling and Software; and Optimization of Industrial Production with AI Algorithms.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
.- AI System Engineering: Math, Modelling and Software.
.- Exploring the benefits of iterative retrieval-augmented generation for risk mitiga tion in LLM response.
.- TrustAI: Designing and Implementing a Trustworthy and User-Centered AI Plat form.
.- Collaborative Trustworthy Foundation Model Framework: An Environmental Sustainability Use-Case to Detect Contamination Objects in Organic Waste Streams.
.- Optimisation of Industrial Production with AI Algorithms.
.- Efficient Federated Learning Integration into Existing MLOps Pipelines via Centralized Model Management.
.- Deep Photometric Stereo for Tool Wear Inspection.
.- Multi-Objective Reinforcement Learning for Energy-Efficient Industrial Control.
.- Deep learning-based defect detection in laser powder bed fusion.
.- Prediction of CNC Manufacturing Time Under Real-World Conditions Using Graph Convolutional Networks.
.- A Vision-Guided Approach to Pick-and-Place Robotics: From Assembly Drawings to Industrial Assembly Automation.
.- Towards Real-time Tool Wear Detection on Edge Devices: A Lightweight Di mensionality Reduction Approach for Spindle Integrated Cutting Force Sensor Data.
.- Energy Optimized Piecewise Polynomial Approximation Utilizing Modern Ma chine Learning Optimizers.
.- AI System Engineering: Math, Modelling and Software.
.- Exploring the benefits of iterative retrieval-augmented generation for risk mitiga tion in LLM response.
.- TrustAI: Designing and Implementing a Trustworthy and User-Centered AI Plat form.
.- Collaborative Trustworthy Foundation Model Framework: An Environmental Sustainability Use-Case to Detect Contamination Objects in Organic Waste Streams.
.- Optimisation of Industrial Production with AI Algorithms.
.- Efficient Federated Learning Integration into Existing MLOps Pipelines via Centralized Model Management.
.- Deep Photometric Stereo for Tool Wear Inspection.
.- Multi-Objective Reinforcement Learning for Energy-Efficient Industrial Control.
.- Deep learning-based defect detection in laser powder bed fusion.
.- Prediction of CNC Manufacturing Time Under Real-World Conditions Using Graph Convolutional Networks.
.- A Vision-Guided Approach to Pick-and-Place Robotics: From Assembly Drawings to Industrial Assembly Automation.
.- Towards Real-time Tool Wear Detection on Edge Devices: A Lightweight Di mensionality Reduction Approach for Spindle Integrated Cutting Force Sensor Data.
.- Energy Optimized Piecewise Polynomial Approximation Utilizing Modern Ma chine Learning Optimizers.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826