112,95 €
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
56 °P sammeln
112,95 €
Als Download kaufen
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
56 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
56 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This monograph presents important recent results in the areas of pure and applied probability. The authors are recognized experts in this area.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 28.17MB
Andere Kunden interessierten sich auch für
V. L. GirkoTheory of Random Determinants (eBook, PDF)72,95 €
EberleinProbability in Banach Spaces 7 (eBook, PDF)40,95 €
Yuan S. ChowProbability Theory (eBook, PDF)40,95 €
Mathematical Statistics and Probability Theory (eBook, PDF)112,95 €
Lin ZhengyanStrong Limit Theorems (eBook, PDF)112,95 €
D. PollardConvergence of Stochastic Processes (eBook, PDF)112,95 €
Hugh GordonDiscrete Probability (eBook, PDF)40,95 €-
-
-
This monograph presents important recent results in the areas of pure and applied probability. The authors are recognized experts in this area.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 392
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461205371
- Artikelnr.: 43987105
- Verlag: Springer US
- Seitenzahl: 392
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461205371
- Artikelnr.: 43987105
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Sums of Independent Random Variables.- 1.1 Lévy-Type Maximal Inequalities.- 1.2 Hoffmann-J?rgensen Type Inequalities.- 1.3 The Khinchin-Kahane Inequalities.- 1.4 Moment Bounds.- 1.5 Estimates with Sharp Constants for the La-Norms of Sums of Independent Random Variables: The L-Function.- 1.6 References for Chapter 1.- 2 Randomly Stopped Processes With Independent Increments.- 2.1 Wald's Equations.- 2.2 Good-Lambda Inequalities.- 2.3 Randomly Stopped Sums of Independent Banach-Valued Variables.- 2.4 Proof of the Lower Bound of Theorem 2.3.1.- 2.5 Continuous Time Processes.- 2.6 Burkholder-Gundy Type Inequalities in Banach Spaces.- 2.7 From Boundary Crossing of Nonrandom Functions to First Passage Times of Processes with Independent Increments.- 2.8 References for Chapter 2.- 3 Decoupling of U-Statistics and U-Processes.- 3.1 Decoupling of U-Processes: Convex Functions.- 3.2 Hypercontractivity of Rademacher Chaos Variables.- 3.3 Minorization of Tail Probabilities: The Paley-Zygmund Argument and a Conditional Jensen's Inequality.- 3.4 Decoupling of U-processes: Tail Probabilities.- 3.5 Randomization136.- 3.6 References for Chapter 3.- 4 Limit Theorems for U-Statistics.- 4.1 Some Inequalities; the Law of Large Numbers.- 4.2 Gaussian Chaos and the Central Limit Theorem for Canonical U-Statistics.- 4.3 The Law of the Iterated Logarithm for Canonical U-Statistics.- 4.4 References for Chapter 4.- 5 Limit Theorems for U-Processes.- 5.1 Some Background on Asymptotics of Processes, Metric Entropy, and Vapnik-?ervonenkis Classes of Functions: Maximal Inequalities.- 5.2 The Law of Large Numbers for U-Processes.- 5.3 The Central Limit Theorem for U-Processes.- 5.4 The Law of the Iterated Logarithm for Canonical U-Processes.- 5.5 Statistical Applications.- 5.6References for Chapter 5.- 6 General Decoupling Inequalities for Tangent Sequences.- 6.1 Some Definitions and Examples.- 6.2 Exponential Decoupling Inequalities for Sums.- 6.3 Tail Probability andLpInequalities for Tangent Sequences I.- 6.4 Tail Probability and Moment Inequalities for Tangent Sequences II: Good-Lambda Inequalities.- 6.5 Differential Subordination and Applications.- 6.6 Decoupling Inequalities Compared to Martingale Inequalities.- 6.7 References for Chapter 6323.- 7 Conditionally Independent Sequences.- 7.1 The Principle of Conditioning and Related Results.- 7.2 Analysis of a Sequence of Two-by-Two Tables.- 7.3 SharpLpComparison of Sums of Arbitrarily Dependent Variables to Sums of CI Variables.- 7.4 References for Chapter 7.- 8 Further Applications of Decoupling.- 8.1 Randomly Stopped Canonical U-Statistics.- 8.2 A General Class of Exponential Inequalities for Martingales and Ratios.- 8.3 References for Chapter 8.- References.
1 Sums of Independent Random Variables.- 1.1 Lévy-Type Maximal Inequalities.- 1.2 Hoffmann-J?rgensen Type Inequalities.- 1.3 The Khinchin-Kahane Inequalities.- 1.4 Moment Bounds.- 1.5 Estimates with Sharp Constants for the La-Norms of Sums of Independent Random Variables: The L-Function.- 1.6 References for Chapter 1.- 2 Randomly Stopped Processes With Independent Increments.- 2.1 Wald's Equations.- 2.2 Good-Lambda Inequalities.- 2.3 Randomly Stopped Sums of Independent Banach-Valued Variables.- 2.4 Proof of the Lower Bound of Theorem 2.3.1.- 2.5 Continuous Time Processes.- 2.6 Burkholder-Gundy Type Inequalities in Banach Spaces.- 2.7 From Boundary Crossing of Nonrandom Functions to First Passage Times of Processes with Independent Increments.- 2.8 References for Chapter 2.- 3 Decoupling of U-Statistics and U-Processes.- 3.1 Decoupling of U-Processes: Convex Functions.- 3.2 Hypercontractivity of Rademacher Chaos Variables.- 3.3 Minorization of Tail Probabilities: The Paley-Zygmund Argument and a Conditional Jensen's Inequality.- 3.4 Decoupling of U-processes: Tail Probabilities.- 3.5 Randomization136.- 3.6 References for Chapter 3.- 4 Limit Theorems for U-Statistics.- 4.1 Some Inequalities; the Law of Large Numbers.- 4.2 Gaussian Chaos and the Central Limit Theorem for Canonical U-Statistics.- 4.3 The Law of the Iterated Logarithm for Canonical U-Statistics.- 4.4 References for Chapter 4.- 5 Limit Theorems for U-Processes.- 5.1 Some Background on Asymptotics of Processes, Metric Entropy, and Vapnik-?ervonenkis Classes of Functions: Maximal Inequalities.- 5.2 The Law of Large Numbers for U-Processes.- 5.3 The Central Limit Theorem for U-Processes.- 5.4 The Law of the Iterated Logarithm for Canonical U-Processes.- 5.5 Statistical Applications.- 5.6References for Chapter 5.- 6 General Decoupling Inequalities for Tangent Sequences.- 6.1 Some Definitions and Examples.- 6.2 Exponential Decoupling Inequalities for Sums.- 6.3 Tail Probability andLpInequalities for Tangent Sequences I.- 6.4 Tail Probability and Moment Inequalities for Tangent Sequences II: Good-Lambda Inequalities.- 6.5 Differential Subordination and Applications.- 6.6 Decoupling Inequalities Compared to Martingale Inequalities.- 6.7 References for Chapter 6323.- 7 Conditionally Independent Sequences.- 7.1 The Principle of Conditioning and Related Results.- 7.2 Analysis of a Sequence of Two-by-Two Tables.- 7.3 SharpLpComparison of Sums of Arbitrarily Dependent Variables to Sums of CI Variables.- 7.4 References for Chapter 7.- 8 Further Applications of Decoupling.- 8.1 Randomly Stopped Canonical U-Statistics.- 8.2 A General Class of Exponential Inequalities for Martingales and Ratios.- 8.3 References for Chapter 8.- References.







