Deterministic and Statistical Methods in Machine Learning (eBook, PDF)
First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures
Redaktion: Winkler, Joab; Niranjan, Mahesan; Lawrence, Neil
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Deterministic and Statistical Methods in Machine Learning (eBook, PDF)
First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures
Redaktion: Winkler, Joab; Niranjan, Mahesan; Lawrence, Neil
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.2MB
Andere Kunden interessierten sich auch für
- Machine Learning and Knowledge Discovery in Databases (eBook, PDF)73,95 €
- Machine Learning Challenges (eBook, PDF)40,95 €
- Statistical Learning and Data Sciences (eBook, PDF)40,95 €
- Machine Learning and Data Mining in Pattern Recognition (eBook, PDF)73,95 €
- Knowledge Science, Engineering and Management (eBook, PDF)73,95 €
- Advanced Intelligent Computing Theories and Applications (eBook, PDF)161,95 €
- Machine Learning: ECML 2006 (eBook, PDF)73,95 €
-
-
-
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 341
- Erscheinungstermin: 17. Oktober 2005
- Englisch
- ISBN-13: 9783540317289
- Artikelnr.: 44227986
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Joab Winkler, University of Sheffield, UK / Neil Lawrence, University of Sheffield, UK / Mahesan Niranjan, University of Sheffield, UK
Object Recognition via Local Patch Labelling.- Multi Channel Sequence Processing.- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis.- Extensions of the Informative Vector Machine.- Efficient Communication by Breathing.- Guiding Local Regression Using Visualisation.- Transformations of Gaussian Process Priors.- Kernel Based Learning Methods: Regularization Networks and RBF Networks.- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions.- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis.- Ensemble Algorithms for Feature Selection.- Can Gaussian Process Regression Be Made Robust Against Model Mismatch?.- Understanding Gaussian Process Regression Using the Equivalent Kernel.- Integrating Binding Site Predictions Using Non-linear Classification Methods.- Support Vector Machine to Synthesise Kernels.- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data.- Variational Bayes Estimation of Mixing Coefficients.- A Comparison of Condition Numbers for the Full Rank Least Squares Problem.- SVM Based Learning System for Information Extraction.
Object Recognition via Local Patch Labelling.- Multi Channel Sequence Processing.- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis.- Extensions of the Informative Vector Machine.- Efficient Communication by Breathing.- Guiding Local Regression Using Visualisation.- Transformations of Gaussian Process Priors.- Kernel Based Learning Methods: Regularization Networks and RBF Networks.- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions.- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis.- Ensemble Algorithms for Feature Selection.- Can Gaussian Process Regression Be Made Robust Against Model Mismatch?.- Understanding Gaussian Process Regression Using the Equivalent Kernel.- Integrating Binding Site Predictions Using Non-linear Classification Methods.- Support Vector Machine to Synthesise Kernels.- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data.- Variational Bayes Estimation of Mixing Coefficients.- A Comparison of Condition Numbers for the Full Rank Least Squares Problem.- SVM Based Learning System for Information Extraction.