D. S. Jones, Michael Plank, B. D. Sleeman
Differential Equations and Mathematical Biology (eBook, PDF)
90,95 €
90,95 €
inkl. MwSt.
Sofort per Download lieferbar
45 °P sammeln
90,95 €
Als Download kaufen
90,95 €
inkl. MwSt.
Sofort per Download lieferbar
45 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
90,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
45 °P sammeln
D. S. Jones, Michael Plank, B. D. Sleeman
Differential Equations and Mathematical Biology (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Deepen students' understanding of biological phenomenaSuitable for courses on differential equations with applications to mathematical biology or as an introduction to mathematical biology, Differential Equations and Mathematical Biology, Second Edition introduces students in the physical, mathematical, and biological sciences to fundamental modeli
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Victor ShapiroFourier Series in Several Variables with Applications to Partial Differential Equations (eBook, PDF)64,95 €
- Stephen A. WirkusA Course in Differential Equations with Boundary Value Problems (eBook, PDF)47,95 €
- George CainSeparation of Variables for Partial Differential Equations (eBook, PDF)62,95 €
- Svetlin G. GeorgievMultiplicative Differential Equations (eBook, PDF)52,95 €
- Vladimir A. DobrushkinApplied Differential Equations (eBook, PDF)145,95 €
- Victor HennerOrdinary and Partial Differential Equations (eBook, PDF)66,95 €
- George F. SimmonsDifferential Equations with Applications and Historical Notes (eBook, PDF)47,95 €
-
-
-
Deepen students' understanding of biological phenomenaSuitable for courses on differential equations with applications to mathematical biology or as an introduction to mathematical biology, Differential Equations and Mathematical Biology, Second Edition introduces students in the physical, mathematical, and biological sciences to fundamental modeli
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 462
- Erscheinungstermin: 9. November 2009
- Englisch
- ISBN-13: 9781420083583
- Artikelnr.: 57160497
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 462
- Erscheinungstermin: 9. November 2009
- Englisch
- ISBN-13: 9781420083583
- Artikelnr.: 57160497
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
D.S. Jones, FRS, FRSE is Professor Emeritus in the Department of Mathematics at the University of Dundee in Scotland.
M.J. Plank is a senior lecturer in the Department of Mathematics and Statistics at the University of Canterbury in Christchurch, New Zealand.
B.D. Sleeman, FRSE is Professor Emeritus in the Department of Applied Mathematics at the University of Leeds in the UK.
M.J. Plank is a senior lecturer in the Department of Mathematics and Statistics at the University of Canterbury in Christchurch, New Zealand.
B.D. Sleeman, FRSE is Professor Emeritus in the Department of Applied Mathematics at the University of Leeds in the UK.
Introduction. Linear Ordinary Differential Equations with Constant
Coefficients. Systems of Linear Ordinary Differential Equations. Modelling
Biological Phenomena. First-Order Systems of Ordinary Differential
Equations. Mathematics of Heart Physiology. Mathematics of Nerve Impulse
Transmission. Chemical Reactions. Predator and Prey. Partial Differential
Equations. Evolutionary Equations. Problems of Diffusion. Bifurcation and
Chaos. Numerical Bifurcation Analysis. Growth of Tumors. Epidemics. Answers
to Selected Exercises. Index.
Coefficients. Systems of Linear Ordinary Differential Equations. Modelling
Biological Phenomena. First-Order Systems of Ordinary Differential
Equations. Mathematics of Heart Physiology. Mathematics of Nerve Impulse
Transmission. Chemical Reactions. Predator and Prey. Partial Differential
Equations. Evolutionary Equations. Problems of Diffusion. Bifurcation and
Chaos. Numerical Bifurcation Analysis. Growth of Tumors. Epidemics. Answers
to Selected Exercises. Index.
1 Introduction.- 1.1 Population growth.- 1.2 Administration of drugs.- 1.3 Cell division.- 1.4 Differential equations with separable variables.- 1.5 General properties.- 1.6 Equations of homogeneous type.- 1.7 Linear differential equations of the first order.- Notes.- Exercises.- 2 Linear ordinary differential equations with constant coefficients.- 2.1 Introduction.- 2.2 First-order linear differential equations.- 2.3 Linear equations of the second order.- 2.4 Finding the complementary function.- 2.5 Determining a particular integral.- 2.6 Forced oscillations.- 2.7 Differential equations of order n.- 2.8 Simultaneous equations of the first order.- 2.9 Replacement of one differential equation by a system.- 2.10 The general system.- 2.11 The fundamental system.- 2.12 Matrix notation.- 2.13 Initial and boundary value problems.- 2.14 Solving the inhomogeneous differential equation.- Exercises.- 3 Modelling biological phenomena.- 3.1 Introduction.- 3.2 Heart beat.- 3.3 Blood flow.- 3.4 Nerve impulse transmission.- 3.5 Chemical reactions.- 3.6 Predator-prey models.- Notes.- Exercises.- 4 First-order systems of ordinary differential equations.- 4.1 Existence and uniqueness.- 4.2 Epidemics.- 4.3 The phase plane.- 4.4 Local stability.- 4.5 Stability.- 4.6 Limit cycles.- 4.7 Forced oscillations.- 4.8 Appendix: existence theory.- Exercises.- 5 Mathematics of heart physiology.- 5.1 The local model.- 5.2 The threshold effect.- 5.3 The phase plane analysis and the heart beat model.- 5.4 Physiological considerations of the heart beat cycle.- 5.5 A model of the cardiac pacemaker 139 Notes.- Exercises.- 6 Mathematics of nerve impulse transmission.- 6.1 Phase plane methods.- 6.2 Qualitative behaviour of travelling waves.- Notes.- Exercises.- 7 Chemical reactions.- 7.1 Wavefronts for theBelousov-Zhabotinskii reaction.- 7.2 Phase plane analysis of Fisher's equation.- 7.3 Qualitative behaviour in the general case.- Notes.- Exercises.- 8 Predator and prey.- 8.1 Catching fish.- 8.2 The effect of fishing.- 8.3 The Volterra-Lotka model.- Exercises.- 9 Partial differential equations.- 9.1 Characteristics for equations of the first order.- 9.2 Another view of characteristics.- 9.3 Linear partial differential equations of the second order.- 9.4 Elliptic partial differential equations.- 9.5 Parabolic partial differential equations.- 9.6 Hyperbolic partial differential equations.- 9.7 The wave equation.- 9.8 Typical problems for the hyperbolic equation.- 9.9 The Euler-Darboux equation.- Exercises.- 10 Evolutionary equations.- 10.1 The heat equation.- 10.2 Separation of variables.- 10.3 Simples evolutionary equations.- 10.4 Comparison theorems.- Notes.- Exercises.- 11 Problems of diffusion.- 11.1 Diffusion through membranes.- 11.2 Energy and energy estimates.- 11.3 Global behaviour of nerve impulse transmissions.- 11.4 Global behaviour in chemical reactions.- Notes.- Exercises.- 12 Catastrophe theory and biological phenomena.- 12.1 What is a catastrophe?.- 12.2 Elementary catastrophes.- 12.3 Biology and catastrophe theory.- Exercises.- 13 Growth of tumours.- 13.1 Introduction.- 13.2 A mathematical model of tumour growth.- 13.3 A spherical tumour.- Notes.- Exercises.- 14 Epidemics.- 14.1 The Kermack-McKendrick model.- 14.2 Vaccination.- 14.3 An incubation model.- 14.4 Spreading in space.- Exercises.- Answers to exercises.
Introduction. Linear Ordinary Differential Equations with Constant
Coefficients. Systems of Linear Ordinary Differential Equations. Modelling
Biological Phenomena. First-Order Systems of Ordinary Differential
Equations. Mathematics of Heart Physiology. Mathematics of Nerve Impulse
Transmission. Chemical Reactions. Predator and Prey. Partial Differential
Equations. Evolutionary Equations. Problems of Diffusion. Bifurcation and
Chaos. Numerical Bifurcation Analysis. Growth of Tumors. Epidemics. Answers
to Selected Exercises. Index.
Coefficients. Systems of Linear Ordinary Differential Equations. Modelling
Biological Phenomena. First-Order Systems of Ordinary Differential
Equations. Mathematics of Heart Physiology. Mathematics of Nerve Impulse
Transmission. Chemical Reactions. Predator and Prey. Partial Differential
Equations. Evolutionary Equations. Problems of Diffusion. Bifurcation and
Chaos. Numerical Bifurcation Analysis. Growth of Tumors. Epidemics. Answers
to Selected Exercises. Index.
1 Introduction.- 1.1 Population growth.- 1.2 Administration of drugs.- 1.3 Cell division.- 1.4 Differential equations with separable variables.- 1.5 General properties.- 1.6 Equations of homogeneous type.- 1.7 Linear differential equations of the first order.- Notes.- Exercises.- 2 Linear ordinary differential equations with constant coefficients.- 2.1 Introduction.- 2.2 First-order linear differential equations.- 2.3 Linear equations of the second order.- 2.4 Finding the complementary function.- 2.5 Determining a particular integral.- 2.6 Forced oscillations.- 2.7 Differential equations of order n.- 2.8 Simultaneous equations of the first order.- 2.9 Replacement of one differential equation by a system.- 2.10 The general system.- 2.11 The fundamental system.- 2.12 Matrix notation.- 2.13 Initial and boundary value problems.- 2.14 Solving the inhomogeneous differential equation.- Exercises.- 3 Modelling biological phenomena.- 3.1 Introduction.- 3.2 Heart beat.- 3.3 Blood flow.- 3.4 Nerve impulse transmission.- 3.5 Chemical reactions.- 3.6 Predator-prey models.- Notes.- Exercises.- 4 First-order systems of ordinary differential equations.- 4.1 Existence and uniqueness.- 4.2 Epidemics.- 4.3 The phase plane.- 4.4 Local stability.- 4.5 Stability.- 4.6 Limit cycles.- 4.7 Forced oscillations.- 4.8 Appendix: existence theory.- Exercises.- 5 Mathematics of heart physiology.- 5.1 The local model.- 5.2 The threshold effect.- 5.3 The phase plane analysis and the heart beat model.- 5.4 Physiological considerations of the heart beat cycle.- 5.5 A model of the cardiac pacemaker 139 Notes.- Exercises.- 6 Mathematics of nerve impulse transmission.- 6.1 Phase plane methods.- 6.2 Qualitative behaviour of travelling waves.- Notes.- Exercises.- 7 Chemical reactions.- 7.1 Wavefronts for theBelousov-Zhabotinskii reaction.- 7.2 Phase plane analysis of Fisher's equation.- 7.3 Qualitative behaviour in the general case.- Notes.- Exercises.- 8 Predator and prey.- 8.1 Catching fish.- 8.2 The effect of fishing.- 8.3 The Volterra-Lotka model.- Exercises.- 9 Partial differential equations.- 9.1 Characteristics for equations of the first order.- 9.2 Another view of characteristics.- 9.3 Linear partial differential equations of the second order.- 9.4 Elliptic partial differential equations.- 9.5 Parabolic partial differential equations.- 9.6 Hyperbolic partial differential equations.- 9.7 The wave equation.- 9.8 Typical problems for the hyperbolic equation.- 9.9 The Euler-Darboux equation.- Exercises.- 10 Evolutionary equations.- 10.1 The heat equation.- 10.2 Separation of variables.- 10.3 Simples evolutionary equations.- 10.4 Comparison theorems.- Notes.- Exercises.- 11 Problems of diffusion.- 11.1 Diffusion through membranes.- 11.2 Energy and energy estimates.- 11.3 Global behaviour of nerve impulse transmissions.- 11.4 Global behaviour in chemical reactions.- Notes.- Exercises.- 12 Catastrophe theory and biological phenomena.- 12.1 What is a catastrophe?.- 12.2 Elementary catastrophes.- 12.3 Biology and catastrophe theory.- Exercises.- 13 Growth of tumours.- 13.1 Introduction.- 13.2 A mathematical model of tumour growth.- 13.3 A spherical tumour.- Notes.- Exercises.- 14 Epidemics.- 14.1 The Kermack-McKendrick model.- 14.2 Vaccination.- 14.3 An incubation model.- 14.4 Spreading in space.- Exercises.- Answers to exercises.