Marko Zlokarnik
Dimensional Analysis and Scale-up in Chemical Engineering (eBook, PDF)
64,95 €
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
64,95 €
Als Download kaufen
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
32 °P sammeln
Marko Zlokarnik
Dimensional Analysis and Scale-up in Chemical Engineering (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This textbook introduces dimensional analysis, and theory of similarity and scale-up to 2nd and 3rd year undergraduate chemical engineering students. It provides process engineers with tools for solving design problems, too complex for numerical treatment.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 12.54MB
Andere Kunden interessierten sich auch für
Y. T. ShahCavitation Reaction Engineering (eBook, PDF)232,95 €
Fouling Science and Technology (eBook, PDF)392,95 €
Oleg M. AlifanovInverse Heat Transfer Problems (eBook, PDF)72,95 €
Mark Anthony BenvenutoIndustrial Chemistry (eBook, PDF)49,95 €
Mark Anthony BenvenutoIndustrial Chemistry (eBook, PDF)56,95 €
André B. de HaanProcess Technology (eBook, PDF)54,95 €
Alfons VogelpohlDistillation (eBook, PDF)38,95 €-
-
-
This textbook introduces dimensional analysis, and theory of similarity and scale-up to 2nd and 3rd year undergraduate chemical engineering students. It provides process engineers with tools for solving design problems, too complex for numerical treatment.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 178
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642766732
- Artikelnr.: 53171253
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 178
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642766732
- Artikelnr.: 53171253
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Dimensional Analysis.- 1.1 A Brief Historical Survey.- 1.2 Introduction to Dimensional Analysis.- 1.3 Fundamentals of Dimensional Analysis.- 2 Description of a Physical Process with a full Set of Dimensionless Numbers.- 2.1 The Relevance List for a Problem.- 2.2 Determination of a Complete Set of Dimensionless Numbers.- 2.3 The ? Relationship.- 2.4 Reduction of the Size of the Matrix.- 2.5 Change of Dimensional Systems.- 3 Similarity and Scale-up.- 3.1 Basic Principles of Scale-up.- 3.2 Experimental Methods for Scale-up.- 3.3 Scale-up under Conditions of Partial Similarity.- 4 Treatment of Variable Physical Properties by Dimensional Analysis.- 4.1 Dimensionless Representation of the Material Function.- 4.2 The ? set for Variable Physical Properties.- 4.3 Treatment of non-Newtonian Liquids by Dimensional Analysis.- 4.4 Treatment of Viscoelastic Liquids by Dimensional Analysis.- Examples of Practical Application.- A Examples from the Field of Mechanical Unit Operations.- Introductory remarks.- Example A 1:.- Power consumption and mixing time for the homogenization of liquid mixtures. Design principles for stirrers and the determination of optimum conditions (minimum mixing work P?).- Example A 2:.- Power consumption in the case of gas/liquid contacting. Design principles for stirrers and model experiments for scale-up.- Example A 3:.- Power consumption and gas throughput in self-aspirating hollow stirrers. Optimum conditions for P/q = min and an answer to the question whether this type of stirrer is suitable for technical applications.- Example A 4:.- Mixing of solids in drums with axially operating paddle mixer.- Example A 5:.- Gas hold-up in bubble columns and its dependenceon geometric, physical and process-related parameters.- Example A 6:.- Description of theflotation process with the aid of two intermediate quantities.- Example A 7:.- Preparation of design and scale-up data for mechanical foam breakers without knowledge of the physical properties of the foam.- Example A 8:.- Description of the temporal course of spin drying in centrifugal filters.- Example A 9:.- Description of particle separation by means of inertial forces.- Example A 10:.- Conveying characteristics of single-screw machines for Newtonian and non-Newtonian liquids. Optimum conditions (P/q = min) and scale-up.- B Examples from the Field of Thermal Unit Operations-Heat and Mass Transfer.- Introductory Remarks.- Example B1:.- Steady-state heat transfer in the mixing vessel at cooling and the optimum conditions for maximum removal of the heat of reaction.- Example B2:.- Steady-state heat transfer in bubble columns.- Example B3:.- Time course of temperature equalization in a liquid with temperature-dependent viscosity in the case of free convection.- Example B4:.- Mass transfer in the gas/liquid system in mixing vessels (bulk aeration) and in biological waste water treatment pools (surface aeration).- Example B5:.- Design and scale-up of injectors as gas distributors in bubble columns.- Example B6:.- Scale-up problems relating to continuous, carrier-free electrophoresis.- C Examples from the Field of Chemical Reaction Engineering.- Introductory remarks:.- Example C1:.- Continuous chemical reaction processes in a tubular reactor.- 1. Homogeneous irreversible reactions of the 1st order.- 2. Heterogeneous catalytic reactions of the 1st order.- Example C2:.- Influence of back-mixing (macromixing) on the degree of conversion in continuous chemical reaction operation.- Example C 3:.- Influence of micro-mixing on selectivity in a continuous chemical reaction process.- Example C4:.- Mass transfer limitation of the reaction rate of fast chemical reactions in the heterogeneous material system gas/liquid.- Important, Named Dimensionless Numbers.- A Mechanical Unit Operations.- B Thermal Unit Operations (Heat Transfer).- C Thermal Unit Operations (Mass Transfer).- D Chemical Reaction Engineering.- References.- A Single Topics.- B Books and General Treatises.- C Examples of Application.
1 Dimensional Analysis.- 1.1 A Brief Historical Survey.- 1.2 Introduction to Dimensional Analysis.- 1.3 Fundamentals of Dimensional Analysis.- 2 Description of a Physical Process with a full Set of Dimensionless Numbers.- 2.1 The Relevance List for a Problem.- 2.2 Determination of a Complete Set of Dimensionless Numbers.- 2.3 The ? Relationship.- 2.4 Reduction of the Size of the Matrix.- 2.5 Change of Dimensional Systems.- 3 Similarity and Scale-up.- 3.1 Basic Principles of Scale-up.- 3.2 Experimental Methods for Scale-up.- 3.3 Scale-up under Conditions of Partial Similarity.- 4 Treatment of Variable Physical Properties by Dimensional Analysis.- 4.1 Dimensionless Representation of the Material Function.- 4.2 The ? set for Variable Physical Properties.- 4.3 Treatment of non-Newtonian Liquids by Dimensional Analysis.- 4.4 Treatment of Viscoelastic Liquids by Dimensional Analysis.- Examples of Practical Application.- A Examples from the Field of Mechanical Unit Operations.- Introductory remarks.- Example A 1:.- Power consumption and mixing time for the homogenization of liquid mixtures. Design principles for stirrers and the determination of optimum conditions (minimum mixing work P?).- Example A 2:.- Power consumption in the case of gas/liquid contacting. Design principles for stirrers and model experiments for scale-up.- Example A 3:.- Power consumption and gas throughput in self-aspirating hollow stirrers. Optimum conditions for P/q = min and an answer to the question whether this type of stirrer is suitable for technical applications.- Example A 4:.- Mixing of solids in drums with axially operating paddle mixer.- Example A 5:.- Gas hold-up in bubble columns and its dependenceon geometric, physical and process-related parameters.- Example A 6:.- Description of theflotation process with the aid of two intermediate quantities.- Example A 7:.- Preparation of design and scale-up data for mechanical foam breakers without knowledge of the physical properties of the foam.- Example A 8:.- Description of the temporal course of spin drying in centrifugal filters.- Example A 9:.- Description of particle separation by means of inertial forces.- Example A 10:.- Conveying characteristics of single-screw machines for Newtonian and non-Newtonian liquids. Optimum conditions (P/q = min) and scale-up.- B Examples from the Field of Thermal Unit Operations-Heat and Mass Transfer.- Introductory Remarks.- Example B1:.- Steady-state heat transfer in the mixing vessel at cooling and the optimum conditions for maximum removal of the heat of reaction.- Example B2:.- Steady-state heat transfer in bubble columns.- Example B3:.- Time course of temperature equalization in a liquid with temperature-dependent viscosity in the case of free convection.- Example B4:.- Mass transfer in the gas/liquid system in mixing vessels (bulk aeration) and in biological waste water treatment pools (surface aeration).- Example B5:.- Design and scale-up of injectors as gas distributors in bubble columns.- Example B6:.- Scale-up problems relating to continuous, carrier-free electrophoresis.- C Examples from the Field of Chemical Reaction Engineering.- Introductory remarks:.- Example C1:.- Continuous chemical reaction processes in a tubular reactor.- 1. Homogeneous irreversible reactions of the 1st order.- 2. Heterogeneous catalytic reactions of the 1st order.- Example C2:.- Influence of back-mixing (macromixing) on the degree of conversion in continuous chemical reaction operation.- Example C 3:.- Influence of micro-mixing on selectivity in a continuous chemical reaction process.- Example C4:.- Mass transfer limitation of the reaction rate of fast chemical reactions in the heterogeneous material system gas/liquid.- Important, Named Dimensionless Numbers.- A Mechanical Unit Operations.- B Thermal Unit Operations (Heat Transfer).- C Thermal Unit Operations (Mass Transfer).- D Chemical Reaction Engineering.- References.- A Single Topics.- B Books and General Treatises.- C Examples of Application.







