69,95 €
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
69,95 €
69,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
Als Download kaufen
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
Jetzt verschenken
69,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
  • Format: PDF

This book introduces the state-of-the-art understanding on domain-informed machine learning (DIML) for advanced manufacturing. Methods and case studies presented in this volume show how complicated engineering phenomena and mechanisms are integrated into machine learning problem formulation and methodology development. Ultimately, these methodologies contribute to quality control for smart personalized manufacturing. The topics include domain-informed feature representation, dimension reduction for personalized manufacturing, fabrication-aware modeling of additive manufacturing processes,…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 32.68MB
Produktbeschreibung
This book introduces the state-of-the-art understanding on domain-informed machine learning (DIML) for advanced manufacturing. Methods and case studies presented in this volume show how complicated engineering phenomena and mechanisms are integrated into machine learning problem formulation and methodology development. Ultimately, these methodologies contribute to quality control for smart personalized manufacturing. The topics include domain-informed feature representation, dimension reduction for personalized manufacturing, fabrication-aware modeling of additive manufacturing processes, small-sample machine learning for 3D printing quality, optimal compensation of 3D shape deviation in 3D printing, engineering-informed transfer learning for smart manufacturing, and domain-informed predictive modeling for nanomanufacturing quality. Demonstrating systematically how the various aspects of domain-informed machine learning methods are developed for advanced manufacturing such as additive manufacturing and nanomanufacturing, the book is ideal for researchers, professionals, and students in manufacturing and related engineering fields.

  • Introduces domain-informed learning problem formulation, contextualized data representation, and dimension reduction
  • Introduces small-sample machine learning, transfer learning, and quality control methods for 3D printing and more
  • Reinforces concepts, methods, and tools described with real world manufacturing case studies, examples, and data

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Qiang S. Huang is a Professor in the Epstein Department of Industrial and Systems Engineering at the University of Southern California, Los Angeles, CA.