Ian Miguel
Dynamic Flexible Constraint Satisfaction and its Application to AI Planning (eBook, PDF)
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
72,95 €
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
36 °P sammeln
Ian Miguel
Dynamic Flexible Constraint Satisfaction and its Application to AI Planning (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A detailed systematic review of the constraint satisfaction literature.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 28.08MB
Andere Kunden interessierten sich auch für
Nicoleta NeaguConstraint Satisfaction Techniques for Agent-Based Reasoning (eBook, PDF)40,95 €
Dan CorbettReasoning and Unification over Conceptual Graphs (eBook, PDF)72,95 €
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (eBook, PDF)40,95 €
Data Mining and Constraint Programming (eBook, PDF)40,95 €
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (eBook, PDF)40,95 €
Computational Logistics (eBook, PDF)40,95 €
Artificial Intelligence and Symbolic Computation (eBook, PDF)40,95 €-
-
-
A detailed systematic review of the constraint satisfaction literature.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer London
- Seitenzahl: 318
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9780857293787
- Artikelnr.: 44042598
- Verlag: Springer London
- Seitenzahl: 318
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9780857293787
- Artikelnr.: 44042598
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction.- 1.1 Solving Classical CSPs.- 1.2 Applications of Classical CSP.- 1.3 Limitations of Classical CSP.- 1.4 Dynamic Flexible CSP.- 1.5 Flexible Planning: a DFCSP Application.- 1.6 Structure.- 1.7 Contributions and their Significance.- 2 The Constraint Satisfaction Problem.- 2.1 Constraints and Constraint Graphs.- 2.2 Tree Search Solution Techniques for Classical CSP.- 2.3 Pre-Processing Techniques.- 2.4 Hybrid Tree-search Consistency-enforcing Algorithms.- 2.5 Heuristics.- 2.6 Conflict Recording.- 2.7 The Phase Transition in CSPs.- 2.8 Graph-Based Methods.- 2.9 Extending the CSP Framework.- 2.10 Dynamic Constraint Satisfaction.- 2.11 Summary.- 3 Dynamic Flexible Constraint Satisfaction.- 3.1 Towards Dynamic Flexible Constraint Satisfaction.- 3.2 Examples from the Dynamic Perspective.- 3.3 A Specific Instance of DFCSP.- 3.4 Fuzzy rrDFCSP Solution via Branch and Bound.- 3.5 Fuzzy rrDFCSP Solution via Local Repair.- 3.6 Fuzzy Arc Consistency.- 3.7 Solution Techniques for other DFCSP Instances.- 3.8 An Example.- 3.9 Summary.- 4 An Empirical Study of Fuzzy rrDFCSPs.- 4.1 The Problems.- 4.2 The Algorithms Studied.- 4.3 Evaluation Criteria.- 4.4 Heuristics Investigated.- 4.5 Results: 3-point Satisfaction Scale.- 4.6 Results: 4-point Satisfaction Scale.- 4.7 Results: 5-point Satisfaction Scale.- 4.8 The Utility of Dynamic Information.- 4.9 The Utility of the Deletion Threshold.- 4.10 The Utility of the Constraint Check Ordering Heuristic.- 4.11 The Utility of FLC Variable Selection Heuristics.- 4.12 The Utility of FLC Domain Element Selection Heuristics.- 4.13 Summary.- 5 Dynamic CSP in Domain-independent AI Planning.- 5.1 AI Planning.- 5.2 An Overview of Graphplan.- 5.3 Viewing the Planning Graph as a CSP.- 5.4 Plan Extraction via Dynamic Constraint Satisfaction.-5.5 The GP-rrDCSP Algorithm.- 5.6 Complexity Issues.- 5.7 Avoiding Irrelevant Variables in Memosets Created by Propagation.- 5.8 Focusing the Search.- 5.9 Summary.- 6 GP-rrDCSP: Experimental Results.- 6.1 The Logistics Domain.- 6.2 The Blocks-world Domain.- 6.3 The Gripper Domain.- 6.4 The Movie Domain.- 6.5 The Grid Domain.- 6.6 Summary.- 7 Flexible Planning Problems & Flexible Graphplan.- 7.1 Background.- 7.2 Flexible Planning Problems.- 7.3 Flexible Graph Expansion.- 7.4 Flexible Plan Extraction via rrDFCSP.- 7.5 The FGP Algorithm.- 7.6 Summary.- 8 FGP: Experimental Results.- 8.1 The Test Suite.- 8.2 The Test Suite: Plan Synthesis Results.- 8.3 The Rescue Problem.- 8.4 Summary.- 9 Conclusion.- 9.1 A Summary.- 9.2 Future Work.- 9.3 And Finally.- References.- A Pseudo-code.- A.1 Backtrack.- A.2 Backjump.- A.3 Conflict-directed Backjump.- A.4 Backmark.- A.5 Revise().- A.6 AC-1().- A.7 AC-3().- A.8 AC-1/4().- A.9 Branch and Bound.- B Proofs.- B.1 Soundness and Completeness of FLC.- B.3 Soundness and Completeness of Flexible Graphplan.- D Planning Problems.- D.1 The Test Suite.- D.1.1 Domain Operators.- D.1.2 Problem 1.- D.1.3 Problem 2.- D.1.4 Problem 3.- D.1.5 Problem 4.- D.1.6 Problem 5.- D.1.7 Problem 6.- D.1.8 Problem 7.- D.1.9 Problem 8.- D.1.10 Problem 9.- D.1.11 Problem 10.- D.1.12 Problem 11.- D.1.13 Problem 12.- D.2 The Rescue Problem.- D.2.1 Domain Operators.- D.2.2 Problem Specification.
1 Introduction.- 1.1 Solving Classical CSPs.- 1.2 Applications of Classical CSP.- 1.3 Limitations of Classical CSP.- 1.4 Dynamic Flexible CSP.- 1.5 Flexible Planning: a DFCSP Application.- 1.6 Structure.- 1.7 Contributions and their Significance.- 2 The Constraint Satisfaction Problem.- 2.1 Constraints and Constraint Graphs.- 2.2 Tree Search Solution Techniques for Classical CSP.- 2.3 Pre-Processing Techniques.- 2.4 Hybrid Tree-search Consistency-enforcing Algorithms.- 2.5 Heuristics.- 2.6 Conflict Recording.- 2.7 The Phase Transition in CSPs.- 2.8 Graph-Based Methods.- 2.9 Extending the CSP Framework.- 2.10 Dynamic Constraint Satisfaction.- 2.11 Summary.- 3 Dynamic Flexible Constraint Satisfaction.- 3.1 Towards Dynamic Flexible Constraint Satisfaction.- 3.2 Examples from the Dynamic Perspective.- 3.3 A Specific Instance of DFCSP.- 3.4 Fuzzy rrDFCSP Solution via Branch and Bound.- 3.5 Fuzzy rrDFCSP Solution via Local Repair.- 3.6 Fuzzy Arc Consistency.- 3.7 Solution Techniques for other DFCSP Instances.- 3.8 An Example.- 3.9 Summary.- 4 An Empirical Study of Fuzzy rrDFCSPs.- 4.1 The Problems.- 4.2 The Algorithms Studied.- 4.3 Evaluation Criteria.- 4.4 Heuristics Investigated.- 4.5 Results: 3-point Satisfaction Scale.- 4.6 Results: 4-point Satisfaction Scale.- 4.7 Results: 5-point Satisfaction Scale.- 4.8 The Utility of Dynamic Information.- 4.9 The Utility of the Deletion Threshold.- 4.10 The Utility of the Constraint Check Ordering Heuristic.- 4.11 The Utility of FLC Variable Selection Heuristics.- 4.12 The Utility of FLC Domain Element Selection Heuristics.- 4.13 Summary.- 5 Dynamic CSP in Domain-independent AI Planning.- 5.1 AI Planning.- 5.2 An Overview of Graphplan.- 5.3 Viewing the Planning Graph as a CSP.- 5.4 Plan Extraction via Dynamic Constraint Satisfaction.-5.5 The GP-rrDCSP Algorithm.- 5.6 Complexity Issues.- 5.7 Avoiding Irrelevant Variables in Memosets Created by Propagation.- 5.8 Focusing the Search.- 5.9 Summary.- 6 GP-rrDCSP: Experimental Results.- 6.1 The Logistics Domain.- 6.2 The Blocks-world Domain.- 6.3 The Gripper Domain.- 6.4 The Movie Domain.- 6.5 The Grid Domain.- 6.6 Summary.- 7 Flexible Planning Problems & Flexible Graphplan.- 7.1 Background.- 7.2 Flexible Planning Problems.- 7.3 Flexible Graph Expansion.- 7.4 Flexible Plan Extraction via rrDFCSP.- 7.5 The FGP Algorithm.- 7.6 Summary.- 8 FGP: Experimental Results.- 8.1 The Test Suite.- 8.2 The Test Suite: Plan Synthesis Results.- 8.3 The Rescue Problem.- 8.4 Summary.- 9 Conclusion.- 9.1 A Summary.- 9.2 Future Work.- 9.3 And Finally.- References.- A Pseudo-code.- A.1 Backtrack.- A.2 Backjump.- A.3 Conflict-directed Backjump.- A.4 Backmark.- A.5 Revise().- A.6 AC-1().- A.7 AC-3().- A.8 AC-1/4().- A.9 Branch and Bound.- B Proofs.- B.1 Soundness and Completeness of FLC.- B.3 Soundness and Completeness of Flexible Graphplan.- D Planning Problems.- D.1 The Test Suite.- D.1.1 Domain Operators.- D.1.2 Problem 1.- D.1.3 Problem 2.- D.1.4 Problem 3.- D.1.5 Problem 4.- D.1.6 Problem 5.- D.1.7 Problem 6.- D.1.8 Problem 7.- D.1.9 Problem 8.- D.1.10 Problem 9.- D.1.11 Problem 10.- D.1.12 Problem 11.- D.1.13 Problem 12.- D.2 The Rescue Problem.- D.2.1 Domain Operators.- D.2.2 Problem Specification.







