138,95 €
138,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
69 °P sammeln
138,95 €
138,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
69 °P sammeln
Als Download kaufen
138,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
69 °P sammeln
Jetzt verschenken
138,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
69 °P sammeln
  • Format: ePub

Dynamic Modelling of Time-to-Event Processes covers an alternative dynamic modelling approach for studying time-to-event processes. This innovative approach covers some key elements, including the Development of continuous-time state of dynamic time-to-event processes, an Introduction of an idea of discrete-time dynamic intervention processes, Treating a time-to-event process operating/functioning under multiple time-scales formulation of continuous and discrete-time interconnected dynamic system as hybrid dynamic time-to-event process, Utilizing Euler-type discretized schemes, developing…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 18.9MB
Produktbeschreibung
Dynamic Modelling of Time-to-Event Processes covers an alternative dynamic modelling approach for studying time-to-event processes. This innovative approach covers some key elements, including the Development of continuous-time state of dynamic time-to-event processes, an Introduction of an idea of discrete-time dynamic intervention processes, Treating a time-to-event process operating/functioning under multiple time-scales formulation of continuous and discrete-time interconnected dynamic system as hybrid dynamic time-to-event process, Utilizing Euler-type discretized schemes, developing theoretical dynamic algorithms, and more.Additional elements of this process include an Introduction of conceptual and computational state and parameter estimation procedures, Developing multistage a robust mean square suboptimal criterion for state and parameter estimation, and Extending the idea conceptual computational simulation process and applying real datasets. - Presents a dynamic approach which does not require a closed-form survival/reliability distribution - Provides updates that are independent of existing Maximum likelihood, Bayesian, and Nonparametric methods - Applies to nonlinear and non-stationary interconnected large-scale dynamic systems - Includes frailty and other models in survival analysis as case studies

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Gangaram S. Ladde is a Professor of Mathematics and Statistics at the University of South Florida (since 2007). Prior to that he was Professor of Mathematics at the University of Texas at Arlington (1980-2007). He received his Ph.D. in Mathematics from the University of Rhode Island in 1972. He has published more than 190 peer-reviewed articles, co-authored four monographs, and co-edited six proceedings of international conferences, including 'Introduction to Differential Equations: Stochastic Modeling, Methods and Analysis' (World Scientific Publishing Company, Singapore, 2013); 'Stochastic versus Deterministic Systems of Differential Equations' (Inc, New York, 2004) and 'Random Differential Inequalities' (Academic Press, New York, 1980). Professor Ladde is the Founder and joint Editor-in-Chief (1983-present) of the Journal of Stochastic Analysis and Applications. He is also an Editorial Board member of several Mathematical Science journals and the recipient of research awards and grants. Recently, Dr. Ladde research team's innovative research work is technologically transferred as: United States Patent in 2021 (another work is pending.)