The underlying theory is illustrated by numerous examples and there are around 300 exercises, designedto promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors.
Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"UK mathematicians Griffiths (Univ. of Dundee) and Dold and Silvester (both, Univ. of Manchester) introduce undergraduates to partial differential equations (PDEs) from both the analytical and numerical points of view. ... Summing Up: Recommended. Upper-division undergraduates through professionals/practitioners." (D. P. Turner, Choice, Vol. 53 (11), July, 2016)
"This introduction to partial differential equations is designed for upper level undergraduates in mathematics. ... The writing is lively, the authors make appealing use of computational examples and visualization, and they are very successful at conveying and integrating physical intuition. ... This is probably the best introductory book on PDEs that I have seen in some time. It is well worth a look." (William J. Satzer, MAA Reviews, maa.org, April, 2016)
"This textbook offers a nice introduction to analytical and numerical methods for partial differential equations. ... The book is self-contained and the prerequisites is a standard course in calculus and linear algebra. The textbook appeals to undergraduate students in both scientific and engineering programs in which PDEs are of practical importance." (Marius Ghergu, zbMATH 1330.35001, 2016)








