Hartmut Pohlheim
Evolutionäre Algorithmen (eBook, PDF)
Verfahren, Operatoren und Hinweise für die Praxis
-19%11
69,23 €
84,99 €**
69,23 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
35 °P sammeln
-19%11
69,23 €
84,99 €**
69,23 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
35 °P sammeln
Als Download kaufen
84,99 €****
-19%11
69,23 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
35 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
84,99 €****
-19%11
69,23 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
35 °P sammeln
Hartmut Pohlheim
Evolutionäre Algorithmen (eBook, PDF)
Verfahren, Operatoren und Hinweise für die Praxis
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Matlab-Tools zum Download
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 35.02MB
Andere Kunden interessierten sich auch für
Ingrid GerdesEvolutionäre Algorithmen (eBook, PDF)24,27 €
Harald NahrstedtAlgorithmen für Ingenieure (eBook, PDF)46,99 €
Martin GrötschelGeometric Algorithms and Combinatorial Optimization (eBook, PDF)104,95 €
Winfried HochstättlerAlgorithmische Mathematik (eBook, PDF)29,66 €
Michael GriebelNumerische Simulation in der Moleküldynamik (eBook, PDF)35,96 €
Edmund WeitzKonkrete Mathematik (nicht nur) für Informatiker (eBook, PDF)59,99 €
Gilbert StrangWissenschaftliches Rechnen (eBook, PDF)46,99 €-
-
-
Matlab-Tools zum Download
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 317
- Erscheinungstermin: 7. März 2013
- Deutsch
- ISBN-13: 9783642571374
- Artikelnr.: 53106867
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 317
- Erscheinungstermin: 7. März 2013
- Deutsch
- ISBN-13: 9783642571374
- Artikelnr.: 53106867
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Einleitung.- 2 Struktur und Aufbau Evolutionärer Algorithmen.- 3 Grundlegende Verfahren und Operatoren.- 3.1 Fitneßzuweisung.- 3.2 Selektion.- 3.3 Rekombination.- 3.4 Mutation.- 3.5 Wiedereinfügen (Reinsertion).- 3.6 Initialisierung der Individuen.- 3.7 Abbruchkriterien.- 3.8 Zusammenfassung.- 4 Populationen, verschiedene Strategien und Konkurrenz.- 4.1 Klassifikation von Populationsmodellen.- 4.2 Globales Modell.- 4.3 Lokales Modell.- 4.4 Regionales Modell.- 4.5 Anwendung verschiedener Strategien.- 4.6 Konkurrierende Unterpopulationen.- 4.7 Zusammenfassung.- 5 Visualisierung und Optimierung.- 5.1 Systematisierung der Visualisierung von EA.- 5.2 Globale Eigenschaften einer Population.- 5.3 Lokale Eigenschaften einer Population.- 5.4 Hochdimensionale Visualisierung.- 5.5 Eigenschaften der Zielfunktion.- 5.6 Protokollierung von Daten und Ergebnissen.- 5.7 Zusammenfassung und Ausblick.- 6 Genetic and Evolutionary Algorithm Toolbox for Matlab.- 6.1 Aufbau und Struktur der GEATbx.- 6.2 Anwenderschnittstelle-Scriptfunktionen.- 6.3 Vordefinierte Algorithmen-Toolboxfunktionen.- 6.4 Zentralfunktion.- 6.5 Zielfunktionen und Beispiele.- 6.6 Einbeziehung problemspezifischen Wissens.- 6.7 Dokumentation.- 6.8 Zusammenfassung und Ausblick.- 7 Kombination von Operatoren zu Evolutionären Algorithmen.- 7.1 Allgemein einstellbare Verfahren und Operatoren.- 7.2 Global orientierte Parameteroptimierung.- 7.3 Lokal orientierte Parameteroptimierung.- 7.4 Parameteroptimierung binärer Variablen.- 7.5 Kombinatorische Optimierung.- 7.6 Parameteroptimierung von Variablen verschiedener Repräsentation.- 7.7 Zusammenfassung.- 8 Anwendung Evolutionärer Algorithmen auf Praxisprobleme.- 8.1 Vorgehen bei der Lösung von Optimierungsaufgaben.- 8.2 Optimierung mehrdimensionaler Funktionen.- 8.3 Parameteridentifikation eines Dieselmotormodells.- 8.4 Optimierung der Parameter eines Reglers (Fahrzeuglenkung).- 8.5 Steuerung eines komplexen Systems (Gewächshausklima).- 8.6 Zusammenfassung.- 9 Schlußbetrachtungen.- 9.1 Zusammenfassung.- 9.2 Ausblick.- A. 1 Historische Entwicklung Evolutionärer Algorithmen.- A.1.1 Erste Arbeiten zu Evolutionären Algorithmen.- A.1.2 Evolutionäre Programmierung.- A.1.3 Evolutionsstrategien.- A.1.4 Genetische Algorithmen.- A.1.5 Evolutionäre Algorithmen heute.- A.2 Gewächshaus- und Pflanzenmodell.- A.2.1 Zustandsgieichungen des Gewächshauses.- A.2.2 Zustandsgieichungen des Pflanzenmodells (Paprika).- A.2.3 Biomasse und Gewinn.- A.2.4 Beschränkungen.- Evolutionäre Algorithmen und Optimierung.- Kombinatorische Optimierung (TSP, Scheduling).- Behandlung von Populationen-Parallele Modelle.- Visualisierung.- Polyploidie bei Evolutionären Algorithmen.- Biologie, Genetik und Populationsgenetik.- Pflanzenwachstum und Gewächshaus.
1 Einleitung.- 2 Struktur und Aufbau Evolutionärer Algorithmen.- 3 Grundlegende Verfahren und Operatoren.- 3.1 Fitneßzuweisung.- 3.2 Selektion.- 3.3 Rekombination.- 3.4 Mutation.- 3.5 Wiedereinfügen (Reinsertion).- 3.6 Initialisierung der Individuen.- 3.7 Abbruchkriterien.- 3.8 Zusammenfassung.- 4 Populationen, verschiedene Strategien und Konkurrenz.- 4.1 Klassifikation von Populationsmodellen.- 4.2 Globales Modell.- 4.3 Lokales Modell.- 4.4 Regionales Modell.- 4.5 Anwendung verschiedener Strategien.- 4.6 Konkurrierende Unterpopulationen.- 4.7 Zusammenfassung.- 5 Visualisierung und Optimierung.- 5.1 Systematisierung der Visualisierung von EA.- 5.2 Globale Eigenschaften einer Population.- 5.3 Lokale Eigenschaften einer Population.- 5.4 Hochdimensionale Visualisierung.- 5.5 Eigenschaften der Zielfunktion.- 5.6 Protokollierung von Daten und Ergebnissen.- 5.7 Zusammenfassung und Ausblick.- 6 Genetic and Evolutionary Algorithm Toolbox for Matlab.- 6.1 Aufbau und Struktur der GEATbx.- 6.2 Anwenderschnittstelle-Scriptfunktionen.- 6.3 Vordefinierte Algorithmen-Toolboxfunktionen.- 6.4 Zentralfunktion.- 6.5 Zielfunktionen und Beispiele.- 6.6 Einbeziehung problemspezifischen Wissens.- 6.7 Dokumentation.- 6.8 Zusammenfassung und Ausblick.- 7 Kombination von Operatoren zu Evolutionären Algorithmen.- 7.1 Allgemein einstellbare Verfahren und Operatoren.- 7.2 Global orientierte Parameteroptimierung.- 7.3 Lokal orientierte Parameteroptimierung.- 7.4 Parameteroptimierung binärer Variablen.- 7.5 Kombinatorische Optimierung.- 7.6 Parameteroptimierung von Variablen verschiedener Repräsentation.- 7.7 Zusammenfassung.- 8 Anwendung Evolutionärer Algorithmen auf Praxisprobleme.- 8.1 Vorgehen bei der Lösung von Optimierungsaufgaben.- 8.2 Optimierung mehrdimensionaler Funktionen.- 8.3 Parameteridentifikation eines Dieselmotormodells.- 8.4 Optimierung der Parameter eines Reglers (Fahrzeuglenkung).- 8.5 Steuerung eines komplexen Systems (Gewächshausklima).- 8.6 Zusammenfassung.- 9 Schlußbetrachtungen.- 9.1 Zusammenfassung.- 9.2 Ausblick.- A. 1 Historische Entwicklung Evolutionärer Algorithmen.- A.1.1 Erste Arbeiten zu Evolutionären Algorithmen.- A.1.2 Evolutionäre Programmierung.- A.1.3 Evolutionsstrategien.- A.1.4 Genetische Algorithmen.- A.1.5 Evolutionäre Algorithmen heute.- A.2 Gewächshaus- und Pflanzenmodell.- A.2.1 Zustandsgieichungen des Gewächshauses.- A.2.2 Zustandsgieichungen des Pflanzenmodells (Paprika).- A.2.3 Biomasse und Gewinn.- A.2.4 Beschränkungen.- Evolutionäre Algorithmen und Optimierung.- Kombinatorische Optimierung (TSP, Scheduling).- Behandlung von Populationen-Parallele Modelle.- Visualisierung.- Polyploidie bei Evolutionären Algorithmen.- Biologie, Genetik und Populationsgenetik.- Pflanzenwachstum und Gewächshaus.







