Explainable AI in Healthcare (eBook, ePUB)
Unboxing Machine Learning for Biomedicine
Redaktion: Raval, Mehul S; Kapdi, Rupal; Kaya, Tolga; Roy, Mohendra
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Explainable AI in Healthcare (eBook, ePUB)
Unboxing Machine Learning for Biomedicine
Redaktion: Raval, Mehul S; Kapdi, Rupal; Kaya, Tolga; Roy, Mohendra
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This title covers computer vision and machine learning (ML) advances that facilitate automation in diagnostic, therapeutic, and preventative healthcare. The book shows the development of algorithms and architectures for healthcare.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Explainable AI in Healthcare (eBook, PDF)52,95 €
- Kamarul Imran MusaData Analysis in Medicine and Health using R (eBook, ePUB)46,95 €
- Kamarul Imran MusaData Analysis in Medicine and Health using R (eBook, PDF)46,95 €
- A. Sheik AbdullahSwarm Intelligence and its Applications in Biomedical Informatics (eBook, ePUB)52,95 €
- AI Based Advancements in Biometrics and its Applications (eBook, ePUB)52,95 €
- Bioinformatics (eBook, ePUB)62,95 €
- Healthcare Services in the Metaverse (eBook, ePUB)115,95 €
-
-
-
This title covers computer vision and machine learning (ML) advances that facilitate automation in diagnostic, therapeutic, and preventative healthcare. The book shows the development of algorithms and architectures for healthcare.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 328
- Erscheinungstermin: 17. Juli 2023
- Englisch
- ISBN-13: 9781000906400
- Artikelnr.: 68011559
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 328
- Erscheinungstermin: 17. Juli 2023
- Englisch
- ISBN-13: 9781000906400
- Artikelnr.: 68011559
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Mehul S Raval, Associate Dean - Experiential Learning and Professor, School of Engineering and Applied Science, Ahmedabad University, Ahmedabad, India Mohendra Roy, Assistant Professor, Information and Communication Technology Department, School of Technology, Pandit Deendayal Energy University, Gandhinagar, India Tolga Kaya, , Professor and Director of Engineering Programs, Sacred Heart University, Fairfield, CT, USA Rupal Kapdi, Assistant Professor, Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmedabad, India
1. Human-AI Relationship in Healthcare. 2. Deep Learning in Medical Image
Analysis: Recent Models and Explainability. 3. An Overview of Functional
Near-Infrared Spectroscopy and Explainable Artificial Intelligence in
fNIRS. 4. An Explainable Method for Image Registration with Applications in
Medical Imaging. 5. State-of-the-Art Deep Learning Method and Its
Explainability for Computerized Tomography Image Segmentation. 6.
Interpretability of Segmentation and Overall Survival for Brain Tumors. 7.
Identification of MR Image Biomarkers in Brain Tumor Patients Using Machine
Learning and Radiomics Features. 8. Explainable Artificial Intelligence in
Breast Cancer Identification. 9. Interpretability of Self-Supervised
Learning for Breast Cancer Image Analysis. 10. Predictive Analytics in
Hospital Readmission for Diabetes Risk Patients. 11. Continuous Blood
Glucose Monitoring Using Explainable AI Techniques. 12. Decision Support
System for Facial Emotion-Based Progression Detection of Parkinson's
Patients. 13. Interpretable Machine Learning in Athletics for Injury Risk
Prediction. 14. Federated Learning and Explainable AI in Healthcare.
Analysis: Recent Models and Explainability. 3. An Overview of Functional
Near-Infrared Spectroscopy and Explainable Artificial Intelligence in
fNIRS. 4. An Explainable Method for Image Registration with Applications in
Medical Imaging. 5. State-of-the-Art Deep Learning Method and Its
Explainability for Computerized Tomography Image Segmentation. 6.
Interpretability of Segmentation and Overall Survival for Brain Tumors. 7.
Identification of MR Image Biomarkers in Brain Tumor Patients Using Machine
Learning and Radiomics Features. 8. Explainable Artificial Intelligence in
Breast Cancer Identification. 9. Interpretability of Self-Supervised
Learning for Breast Cancer Image Analysis. 10. Predictive Analytics in
Hospital Readmission for Diabetes Risk Patients. 11. Continuous Blood
Glucose Monitoring Using Explainable AI Techniques. 12. Decision Support
System for Facial Emotion-Based Progression Detection of Parkinson's
Patients. 13. Interpretable Machine Learning in Athletics for Injury Risk
Prediction. 14. Federated Learning and Explainable AI in Healthcare.
1. Human-AI Relationship in Healthcare. 2. Deep Learning in Medical Image
Analysis: Recent Models and Explainability. 3. An Overview of Functional
Near-Infrared Spectroscopy and Explainable Artificial Intelligence in
fNIRS. 4. An Explainable Method for Image Registration with Applications in
Medical Imaging. 5. State-of-the-Art Deep Learning Method and Its
Explainability for Computerized Tomography Image Segmentation. 6.
Interpretability of Segmentation and Overall Survival for Brain Tumors. 7.
Identification of MR Image Biomarkers in Brain Tumor Patients Using Machine
Learning and Radiomics Features. 8. Explainable Artificial Intelligence in
Breast Cancer Identification. 9. Interpretability of Self-Supervised
Learning for Breast Cancer Image Analysis. 10. Predictive Analytics in
Hospital Readmission for Diabetes Risk Patients. 11. Continuous Blood
Glucose Monitoring Using Explainable AI Techniques. 12. Decision Support
System for Facial Emotion-Based Progression Detection of Parkinson's
Patients. 13. Interpretable Machine Learning in Athletics for Injury Risk
Prediction. 14. Federated Learning and Explainable AI in Healthcare.
Analysis: Recent Models and Explainability. 3. An Overview of Functional
Near-Infrared Spectroscopy and Explainable Artificial Intelligence in
fNIRS. 4. An Explainable Method for Image Registration with Applications in
Medical Imaging. 5. State-of-the-Art Deep Learning Method and Its
Explainability for Computerized Tomography Image Segmentation. 6.
Interpretability of Segmentation and Overall Survival for Brain Tumors. 7.
Identification of MR Image Biomarkers in Brain Tumor Patients Using Machine
Learning and Radiomics Features. 8. Explainable Artificial Intelligence in
Breast Cancer Identification. 9. Interpretability of Self-Supervised
Learning for Breast Cancer Image Analysis. 10. Predictive Analytics in
Hospital Readmission for Diabetes Risk Patients. 11. Continuous Blood
Glucose Monitoring Using Explainable AI Techniques. 12. Decision Support
System for Facial Emotion-Based Progression Detection of Parkinson's
Patients. 13. Interpretable Machine Learning in Athletics for Injury Risk
Prediction. 14. Federated Learning and Explainable AI in Healthcare.