Rolf Steinbuch
Finite Elemente - Ein Einstieg (eBook, PDF)
-26%11
33,26 €
44,99 €**
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
17 °P sammeln
-26%11
33,26 €
44,99 €**
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
17 °P sammeln
Als Download kaufen
44,99 €****
-26%11
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
17 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
44,99 €****
-26%11
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
17 °P sammeln
Rolf Steinbuch
Finite Elemente - Ein Einstieg (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Die Finite Elemente Methode (FEM) ist heute ein gängiges Werkzeug der Ingenieurspraxis. Zahlreiche Programmpakete erlauben einen effektiven Einsatz des Verfahrens auch in kleineren und mittleren Betrieben. Das Buch zeigt dem Leser, was hinter der FEM steht, wie er sie optimal einsetzt und worauf er bei der Anwendung achten muß. Er bekommt einen fundierten, umfassenden Einblick in die Verfahren der FEM und lernt, Anwendungsprobleme zu erkennen, zu lösen und neue Anwendungsmöglichkeiten erfolgreich einzusetzen.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 32.21MB
Andere Kunden interessierten sich auch für
Matthias HaunHandbuch Robotik (eBook, PDF)129,99 €
Hans-Heinrich BotheNeuro-Fuzzy-Methoden (eBook, PDF)35,96 €
Michael CremerRegelungstechnik (eBook, PDF)33,26 €
Ulrich NehmzowMobile Robotik (eBook, PDF)42,25 €
Anton BraunOptimale und adaptive Regelung technischer Systeme (eBook, PDF)24,99 €
Ottmar BeucherWahrscheinlichkeitsrechnung und Statistik mit MATLAB (eBook, PDF)29,99 €
Ottmar BeucherSignale und Systeme: Theorie, Simulation, Anwendung (eBook, PDF)39,99 €-
-
-
Die Finite Elemente Methode (FEM) ist heute ein gängiges Werkzeug der Ingenieurspraxis. Zahlreiche Programmpakete erlauben einen effektiven Einsatz des Verfahrens auch in kleineren und mittleren Betrieben. Das Buch zeigt dem Leser, was hinter der FEM steht, wie er sie optimal einsetzt und worauf er bei der Anwendung achten muß. Er bekommt einen fundierten, umfassenden Einblick in die Verfahren der FEM und lernt, Anwendungsprobleme zu erkennen, zu lösen und neue Anwendungsmöglichkeiten erfolgreich einzusetzen.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 266
- Erscheinungstermin: 7. März 2013
- Deutsch
- ISBN-13: 9783642587504
- Artikelnr.: 53101582
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 266
- Erscheinungstermin: 7. März 2013
- Deutsch
- ISBN-13: 9783642587504
- Artikelnr.: 53101582
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Praktisches Rechnen - Beispiele und Probleme.- 1.1 Berechnungen mit begrenzt genauen Zahlen.- 1.2 Numerische Integration.- 1.3 Integration einer Differentialgleichung mit Euler-Verfahren.- 1.4 Ritz-Verfahren.- 1.5 Galerkin-Verfahren.- 2 Grundlagen der FEM.- 2.1 Die drei Bestandteile eines Berechnungsproblems.- 2.2 Ein einfaches Berechnungsproblem.- 2.3 Kontinuum und diskretes System.- 2.4 Diskretisierung des Kontinuums.- 2.5 Ansatzfunktionen.- 2.6 Die Methode der Finiten Elemente.- 2.7 Anwendungsgebiete der FEM.- 3 Zugstab und Fachwerk.- 3.1 Die Steifigkeit des Zugstabs.- 3.2 Zugstabketten, zusammengesetztee Steifigkeiten.- 3.3 Zugstäbe in der Ebene und im Raum.- 3.4 Fachwerke, Gesamtsteifigkeiten, Randbedingungen.- 3.5 Optimierung der Matrizen.- 4 Elastostatik.- 4.1 Grundbegriffe.- 4.2 Das ebene QUAD4-Element.- 4.3 Die Elemente der Elastostatik.- 4.4 Randbedingimgen und Zwangsbedingungen.- 4.5 Balken und Schalen.- 4.6 Strecken-und Flächenlasten.- 4.7 Einige einfache Berechnungsprobleme.- 5 Potentialprobleme.- 5.1 Einige elementare Potentialprobleme.- 5.2 Der Wärmeleitstab.- 5.3 Die FEM, ein Galerkinverfahren.- 5.4 Randbedingungen, Gesamtmatrizen.- 5.5 Die Elemente der Potentialmechanik.- 5.6 Beispiele einfacher Wärmeleitungsberechnungen.- 5.7 Gekoppelte Probleme, Wärmespannungen.- 6. Dynamik.- 6.1 3 Fragestellungen der linearen Dynamik.- 6.2 Massenmatrizen.- 6.3 Dämpfung.- 6.4 Berechnungen von Eigenschwingungen.- 7 Nichtlineare Probleme.- 7.1 Beispiele nichtlinearer Probleme.- 7.2 Klassifizierung nichtlinearer Probleme.- 7.3 Berechnung nichtlinearer Probleme.- 8 Probleme beim Arbeiten mit Finiten Elementen.- 8.1 Aufgabenstellung.- 8.2 Ablauf einer Berechnung.- 8.3 Interpretation.- 8.4 Gefahren bei der Analyse komplexer Systeme.- 9 Entwicklungstendenzen.- 9.1Kostenentwicklung.- 9.2 Mitarbeiter.- 9.3 CAD-FEM Kopplung.- 9.4 Automatische Netzqualifikation.- 9.5 Expertensysteme.- 9.6 FE-Prozesse.- 9.7 Optimierung.- 9.8 Qualitätssicherung.- A1 Mathematische Grundlagen.- A.1.1 Lineare Algebra.- A1.1.1 Matrizen.- A1.1.2 Vektoren.- A1.1.3 Lineare Gleichungssysteme.- A1.2 Differential-und Integralrechnung.- A1.2.1 Grundbegriffe der Differential- und Integralrechnung.- A1.2.2 Funktionen mehrerer Veränderlicher.- A1.2.3 numerische Differentiation und Integration.- A1.2.4 Operatoren.- A1.3 Differential- und Integralgleichungen.- A1.3.1 gewöhnliche Differentialgleichungen.- A1.3.2 Finite Differenzen.- A1.3.3 Ritz- oder Galerkinansatz (Finite Elemente).- A1.3.4 partielle Differentialgleichungen.- A1.3.5 Integralgleichungen.- A2 3 Herangehensweisen der Physik.- A2.1 Energieerhaltungssatz.- A2.2 Stationäre Potentiale.- A2.3 Prinzip der virtuellen Verrückungen.- A3 Dehnungen und Spannungen.- A3.1 Spannungs-Dehnungsbeziehungen.- A3.2 Verschiebungen und Dehnungen.- A3.3 Hauptspannungen.- A3.4 Vergleichsspannungen.- A3.5 Anisotropie.- Literatur.
1 Praktisches Rechnen - Beispiele und Probleme.- 1.1 Berechnungen mit begrenzt genauen Zahlen.- 1.2 Numerische Integration.- 1.3 Integration einer Differentialgleichung mit Euler-Verfahren.- 1.4 Ritz-Verfahren.- 1.5 Galerkin-Verfahren.- 2 Grundlagen der FEM.- 2.1 Die drei Bestandteile eines Berechnungsproblems.- 2.2 Ein einfaches Berechnungsproblem.- 2.3 Kontinuum und diskretes System.- 2.4 Diskretisierung des Kontinuums.- 2.5 Ansatzfunktionen.- 2.6 Die Methode der Finiten Elemente.- 2.7 Anwendungsgebiete der FEM.- 3 Zugstab und Fachwerk.- 3.1 Die Steifigkeit des Zugstabs.- 3.2 Zugstabketten, zusammengesetztee Steifigkeiten.- 3.3 Zugstäbe in der Ebene und im Raum.- 3.4 Fachwerke, Gesamtsteifigkeiten, Randbedingungen.- 3.5 Optimierung der Matrizen.- 4 Elastostatik.- 4.1 Grundbegriffe.- 4.2 Das ebene QUAD4-Element.- 4.3 Die Elemente der Elastostatik.- 4.4 Randbedingimgen und Zwangsbedingungen.- 4.5 Balken und Schalen.- 4.6 Strecken-und Flächenlasten.- 4.7 Einige einfache Berechnungsprobleme.- 5 Potentialprobleme.- 5.1 Einige elementare Potentialprobleme.- 5.2 Der Wärmeleitstab.- 5.3 Die FEM, ein Galerkinverfahren.- 5.4 Randbedingungen, Gesamtmatrizen.- 5.5 Die Elemente der Potentialmechanik.- 5.6 Beispiele einfacher Wärmeleitungsberechnungen.- 5.7 Gekoppelte Probleme, Wärmespannungen.- 6. Dynamik.- 6.1 3 Fragestellungen der linearen Dynamik.- 6.2 Massenmatrizen.- 6.3 Dämpfung.- 6.4 Berechnungen von Eigenschwingungen.- 7 Nichtlineare Probleme.- 7.1 Beispiele nichtlinearer Probleme.- 7.2 Klassifizierung nichtlinearer Probleme.- 7.3 Berechnung nichtlinearer Probleme.- 8 Probleme beim Arbeiten mit Finiten Elementen.- 8.1 Aufgabenstellung.- 8.2 Ablauf einer Berechnung.- 8.3 Interpretation.- 8.4 Gefahren bei der Analyse komplexer Systeme.- 9 Entwicklungstendenzen.- 9.1Kostenentwicklung.- 9.2 Mitarbeiter.- 9.3 CAD-FEM Kopplung.- 9.4 Automatische Netzqualifikation.- 9.5 Expertensysteme.- 9.6 FE-Prozesse.- 9.7 Optimierung.- 9.8 Qualitätssicherung.- A1 Mathematische Grundlagen.- A.1.1 Lineare Algebra.- A1.1.1 Matrizen.- A1.1.2 Vektoren.- A1.1.3 Lineare Gleichungssysteme.- A1.2 Differential-und Integralrechnung.- A1.2.1 Grundbegriffe der Differential- und Integralrechnung.- A1.2.2 Funktionen mehrerer Veränderlicher.- A1.2.3 numerische Differentiation und Integration.- A1.2.4 Operatoren.- A1.3 Differential- und Integralgleichungen.- A1.3.1 gewöhnliche Differentialgleichungen.- A1.3.2 Finite Differenzen.- A1.3.3 Ritz- oder Galerkinansatz (Finite Elemente).- A1.3.4 partielle Differentialgleichungen.- A1.3.5 Integralgleichungen.- A2 3 Herangehensweisen der Physik.- A2.1 Energieerhaltungssatz.- A2.2 Stationäre Potentiale.- A2.3 Prinzip der virtuellen Verrückungen.- A3 Dehnungen und Spannungen.- A3.1 Spannungs-Dehnungsbeziehungen.- A3.2 Verschiebungen und Dehnungen.- A3.3 Hauptspannungen.- A3.4 Vergleichsspannungen.- A3.5 Anisotropie.- Literatur.







