Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Despite of many years of studies, predicting fluid flow, heat, and chemical transport in fractured-porous media remains a challenge for scientists and engineers worldwide. This monograph is the third in a series on the dynamics of fluids and transport in fractured rock published by the American Geophysical Union (Geophysical Monograph Series, Vol. 162, 2005; and Geophysical Monograph, No. 122, 2000). This monograph is dedicated to the late Dr. Paul Witherspoon for his seminal influence on the development of ideas and methodologies and the birth of contemporary fractured rock hydrogeology,…mehr
Despite of many years of studies, predicting fluid flow, heat, and chemical transport in fractured-porous media remains a challenge for scientists and engineers worldwide. This monograph is the third in a series on the dynamics of fluids and transport in fractured rock published by the American Geophysical Union (Geophysical Monograph Series, Vol. 162, 2005; and Geophysical Monograph, No. 122, 2000). This monograph is dedicated to the late Dr. Paul Witherspoon for his seminal influence on the development of ideas and methodologies and the birth of contemporary fractured rock hydrogeology, including such fundamental and applied problems as environmental remediation; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering.
This monograph addresses fundamental and applied scientific questions and is intended to assist scientists and practitioners bridge gaps in the current scientific knowledge in the areas of theoretical fluids dynamics, field measurements, and experiments for different practical applications. Readers of this book will include researchers, engineers, and professionals within academia, Federal agencies, and industry, as well as graduate/undergraduate students involved in theoretical, experimental, and numerical modeling studies of fluid dynamics and reactive chemical transport in the unsaturated and saturated zones, including studies pertaining to petroleum and geothermal reservoirs, environmental management and remediation, mining, gas storage, and radioactive waste isolation in underground repositories.
Volume highlights include discussions of the following:
Fundamentals of using a complex systems approach to describe flow and transport in fractured-porous media.
Methods of Field Measurements and Experiments
Collective behavior and emergent properties of complex fractured rock systems
Connection to the surrounding environment
Multi-disciplinary research for different applications
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Boris Faybishenko is a Staff Scientist in the Hydrogeology Department, Earth Sciences Division of the E.O. Lawrence Berkeley National Laboratory. John E. Gale is a consultant, advisor and senior geological engineer. Dr. Gale is a former Professor in the Department of Earth Sciences at the Memorial University of Newfoundland. Sally M. Benson is the Director of the Global Climate and Energy Project and Professor in the Department of Energy Resources Engineering at Stanford University.
Inhaltsangabe
Contributors vii Preface ix Introduction: Paul Witherspoon and the Birth of Contemporary Fractured Rock Hydrogeology R. Allan Freeze, Iraj Javandel, and Shlomo P. Neuman 1 1 A Complex Systems Approach to Describing Flow and Transport in Fractured-Porous Media Boris Faybishenko, Sally M. Benson, John E. Gale, and Fred Molz 5 Part I: Methods of Field Measurements and Experiments 2 Fracture Flow and Underground Research Laboratories for Nuclear Waste Disposal and Physics Experiments Joseph S. Y. Wang and John A. Hudson 21 3 Permeability Structure of a Strike-Slip Fault Kenzi Karasaki, Celia T. Onishi, and Junichi Goto 43 4 Feasibility of Long-Term Passive Monitoring of Deep Hydrogeology with Flowing Fluid Electric Conductivity Logging Method Prabhakar Sharma, Chin-Fu Tsang, Christine Doughty, Auli Niemi, and Jacob Bensabat 53 Part II: Collective Behavior and Emergent Properties of Complex Fractured Rock Systems 5 Particle Swarms in Fractures Eric Boomsma and Laura J. Pyrak-Nolte 65 6 The Effect of Chemical Osmosis on Oil and Gas Production from Fractured Shale Formations Perapon Fakcharoenphol, Basak Kurtoglu, Hossein Kazemi, Sarinya Charoenwongsa, and Yu-Shu Wu 85 7 An Experimental Investigation of Stress-Dependent Permeability and Permeability Hysteresis Behavior in Rock Fractures Da Huo and Sally M. Benson 99 8 Permeability of Partially Cemented Fractures Michael C. Tsenn 115 9 An Emergent Conductivity Relationship for Water Flow Based on Minimized Energy Dissipation: From Landscapes to Unsaturated Soils Hui-Hai Liu 129 10 Comparison of Simulated Flow in a Discrete Fracture Laboratory Sample Based on Measured Average and Spatially Varying Hydraulic Conductivity Eunjeong Seok and John E. Gale 137 Part III: Connection to the Surrounding Environment 11 Fractures as Advective Conduits at the Earth-Atmosphere Interface Maria Inés Dragila, Uri Nachshon, and Noam Weisbrod 161 12 Quantifying Water Flow and Retention in an Unsaturated Fracture-Facial Domain John R. Nimmo and Siamak Malek-Mohammadi 169 Part IV: Multidisciplinary Research for Different Applications 13 Plutonium Transport in Soil and Plants: An Interdisciplinary Study Motivated by Lysimeter Experiments at the Savannah River Site Fred Molz, Inci Demirkanli, Shannon Thompson, Dan Kaplan, and Brian Powell 183 14 Experimental and Modeling Studies of Episodic Air-Water Two-Phase Flow in Fractures and Fracture Networks Thomas Wood and Hai Huang 209 15 Simulation of THM Processes in Fractured Reservoirs Philip H. Winterfeld and Yu-Shu Wu 229 Index 243
Contributors vii Preface ix Introduction: Paul Witherspoon and the Birth of Contemporary Fractured Rock Hydrogeology R. Allan Freeze, Iraj Javandel, and Shlomo P. Neuman 1 1 A Complex Systems Approach to Describing Flow and Transport in Fractured-Porous Media Boris Faybishenko, Sally M. Benson, John E. Gale, and Fred Molz 5 Part I: Methods of Field Measurements and Experiments 2 Fracture Flow and Underground Research Laboratories for Nuclear Waste Disposal and Physics Experiments Joseph S. Y. Wang and John A. Hudson 21 3 Permeability Structure of a Strike-Slip Fault Kenzi Karasaki, Celia T. Onishi, and Junichi Goto 43 4 Feasibility of Long-Term Passive Monitoring of Deep Hydrogeology with Flowing Fluid Electric Conductivity Logging Method Prabhakar Sharma, Chin-Fu Tsang, Christine Doughty, Auli Niemi, and Jacob Bensabat 53 Part II: Collective Behavior and Emergent Properties of Complex Fractured Rock Systems 5 Particle Swarms in Fractures Eric Boomsma and Laura J. Pyrak-Nolte 65 6 The Effect of Chemical Osmosis on Oil and Gas Production from Fractured Shale Formations Perapon Fakcharoenphol, Basak Kurtoglu, Hossein Kazemi, Sarinya Charoenwongsa, and Yu-Shu Wu 85 7 An Experimental Investigation of Stress-Dependent Permeability and Permeability Hysteresis Behavior in Rock Fractures Da Huo and Sally M. Benson 99 8 Permeability of Partially Cemented Fractures Michael C. Tsenn 115 9 An Emergent Conductivity Relationship for Water Flow Based on Minimized Energy Dissipation: From Landscapes to Unsaturated Soils Hui-Hai Liu 129 10 Comparison of Simulated Flow in a Discrete Fracture Laboratory Sample Based on Measured Average and Spatially Varying Hydraulic Conductivity Eunjeong Seok and John E. Gale 137 Part III: Connection to the Surrounding Environment 11 Fractures as Advective Conduits at the Earth-Atmosphere Interface Maria Inés Dragila, Uri Nachshon, and Noam Weisbrod 161 12 Quantifying Water Flow and Retention in an Unsaturated Fracture-Facial Domain John R. Nimmo and Siamak Malek-Mohammadi 169 Part IV: Multidisciplinary Research for Different Applications 13 Plutonium Transport in Soil and Plants: An Interdisciplinary Study Motivated by Lysimeter Experiments at the Savannah River Site Fred Molz, Inci Demirkanli, Shannon Thompson, Dan Kaplan, and Brian Powell 183 14 Experimental and Modeling Studies of Episodic Air-Water Two-Phase Flow in Fractures and Fracture Networks Thomas Wood and Hai Huang 209 15 Simulation of THM Processes in Fractured Reservoirs Philip H. Winterfeld and Yu-Shu Wu 229 Index 243
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826