We begin with basic probability concepts, including sample spaces, events, probability distributions, and random variables, progressing to advanced topics like conditional probability, Bayes' theorem, and stochastic processes. This approach lays a solid foundation for further exploration.
Our book balances theory and application, emphasizing practical applications and real-world examples. We cover topics such as statistical inference, estimation, hypothesis testing, Bayesian inference, Markov chains, Monte Carlo methods, and more. Each topic includes clear explanations, illustrative examples, and exercises to reinforce learning.
Whether you're a student building a solid understanding of probability theory, a researcher exploring advanced topics, or a practitioner applying probabilistic methods to solve real-world problems, this book is an invaluable resource. We equip readers with the knowledge and tools necessary to tackle complex problems, make informed decisions, and explore probability theory's rich landscape with confidence.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.