52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
Jetzt verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
  • Format: PDF

Four-Dimensional Manifolds and Projective Structure may be considered ¿rst as an introduction to di¿erential geometry and, in particular, to 4-dimensional manifolds, and secondly as an introduction to the study of projective structure and projective relatedness in manifolds.
The initial chapters mainly cover the elementary aspects of set theory, linear algebra, topology, Euclidean geometry, manifold theory and differential geometry, including the idea of a metric and a connection on a manifold and the concept of curvature. After this, the author dives deeper into 4-dimensional manifolds…mehr

Produktbeschreibung
Four-Dimensional Manifolds and Projective Structure may be considered ¿rst as an introduction to di¿erential geometry and, in particular, to 4-dimensional manifolds, and secondly as an introduction to the study of projective structure and projective relatedness in manifolds.

The initial chapters mainly cover the elementary aspects of set theory, linear algebra, topology, Euclidean geometry, manifold theory and differential geometry, including the idea of a metric and a connection on a manifold and the concept of curvature. After this, the author dives deeper into 4-dimensional manifolds and, in particular, the positive definite case for the metric. The book also covers Lorentz signature and neutral signature in detail and introduces, and makes use of, the holonomy group of such a manifold for connections associated with metrics of each of these three possible signatures. A brief interlude on some key aspects of geometrical symmetry precedes a detailed description of projective relatedness, that is, the relationship between two symmetric connections (and between their associated metrics) which give rise to the same geodesic paths.

Features:

  • Offers a detailed, straightforward discussion of the basic properties of (4-dimensional) manifolds.
  • Introduces holonomy theory, and makes use of it, in a novel manner.
  • Suitable for postgraduates and researchers, including master's and PhD students.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Graham Hall, FRSE is Professor Emeritus in the Institute of Mathematics at the University of Aberdeen, Scotland, UK. He received his PhD from the University of Newcastle upon Tyne in 1971 and came to Aberdeen in 1973. He also served as the Head of department at the University of Aberdeen from 1992 - 1995. His interests lie in classical mathematical relativity theory and differential geometry. He is the author of the text Symmetries and Curvature Structure in General Relativity (World Scientific, 2004) and has contributed to, or edited, several other texts. He has also delivered over 200 invited talks on these topics at many universities and academies in Europe, North and South America, Asia, Africa and Australasia and has published over 180 papers in scientific research journals.
Dr Hall is a Fellow of the Royal Society of Edinburgh and of the Royal Astronomical Society and serves on the editorial board of many scientific research journals worldwide.