Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer…mehr
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics.While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
6.6 Quasiconformal harmonic homeomorphisms and the Hilbert transformation
7 Maximal functions, interpolation, and coefficients
7.1 Maximal theorems
7.1a Hardy/Littlewood/Sobolev theorem
7.2 Maximal characterization of Hp (Burkholder, Gundy and Silverstein)
7.3 "Smooth" Cesàro means
s-maximal theorem
The "W-maximal" theorem
7.4 Interpolation of operators on Hardy spaces
7.4a Application to Taylor coefficients and mean growth
7.4b On the Hardy/Littlewood inequality
7.4c The case of monotone coefficients
7.5 Lacunary series
7.6 A proof of the s-maximal theorem
8 Bergman spaces: Atomic decomposition
8.1 Bergman spaces
8.2 Reproducing kernels
8.3 The Coifman/Rochberg theorem
q-envelops of Hardy spaces
8.4 Coefficients of vector-valued functions. Kalton's theorems
8.4a Inequalities for a Hadamard product
8.4b Applications to spaces of scalar valued functions
9 Lipschitz spaces
9.1 Lipschitz spaces of first order
9.2 Conjugate functions
9.3 Lipschitz condition for the modulus. Dyakonov's theorems with simple proofs by Pavlovic
9.4 Lipschitz spaces of higher order
9.5 Lipschitz spaces as duals of Hp, p < 1
10 Generalized Bergman spaces and Besov spaces
10.1 Decomposition of mixed norm spaces: case 1 < p <
10.1a Besov spaces
10.2 Decomposition of mixed norm spaces: case 0 < p
10.2a Radial limits of Hardy/Bloch functions
10.2b Fractional integration and differentiation
10.3 Möbius invariant Besov spaces
10.4 Mean Lipschitz spaces
10.4a Lacunary series in mixed norm spaces
10.5 Duality in the case 0 < p
10.6 Appendix: Characterizations of Besov spaces
11 BMOA, Bloch space
11.1 The dual of H1 and the Carleson measures
Proof of Fefferman's theorem
11.2 Vanishing mean osillation
11.3 BMOA and mean Lipschitz spaces
11.4 Coefficients of BMOA-functions
11.4a Lacunary series
11.5 The Bloch space
11.5a On the predual of B
Functions with decreasing coefficients
12 Subharmonic behavior
12.1 Subharmonic behavior and Bergman spaces
Two simple proofs of Hardy/Littlewood/Fefferman/Stein theorem
12.2 The space hp, p < 1
Two open problems posed by Hardy and Littlewood
12.3 Subharmonic behavior of smooth functions
12.3a Quasi-nearly subharmonic functions
12.3b Regularly oscillating functions
12.4 A generalization of the Littlewood/Paley theorem
12.4a Invariant Besov spaces and the derivatives of the integral means
12.4b Addendum: The case of vector valued functions
12.5 Mixed norm spaces of harmonic functions
13 Littlewood/Paley theory
13.1 Some more vector maximal functions
13.2 The Littlewood/Paley g-function
Calderon's generalization of the area theorem (p > 0)
A proof of a the Littlewood/Paley g-theorem (p > 0)
13.3 Applications of Cesàro means
13.4 The Littlewood/Paley g-theorem in a generalized form
An improvement
13.5 Proof of Calderon's theorem
14 Tauberian theorems and lacunary series on the interval (0,1)
14.1 Karamata's theorem and Littlewood's theorem
14.1a Tauberian nature of p1/p
14.2 Lacunary series in C[0,1]
14.2a Lacunary series on weighted L-spaces
14.3 Lp-integrability of lacunary series on (0,1)
14.3a Some consequences
Bibliography
Rezensionen
"In this ambitious book, the author treats a number of topics from the theory of functions and function spaces on the unit disc in the complex plane. The selection of topics is far ranging, and includes both classical and modern ideas. Many of his proofs are new or unusual, and many of his ideas and presentations appear here in book form for the first time." - Steven G. Krantz, Mathematical Reviews
"[...] this is a well-written and detailed text with concise proofs. Graduate students and researchers who are pursuing research in harmonic or holomorphic function theory of one or several variables will find this book to be an excellent addition to their personal library." - Manfred Stoll, Zentralblatt für Mathematik
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826