Herbert Popp
Fundamentalgruppen algebraischer Mannigfaltigkeiten (eBook, PDF)
14,99 €
14,99 €
inkl. MwSt.
Sofort per Download lieferbar
7 °P sammeln
14,99 €
Als Download kaufen
14,99 €
inkl. MwSt.
Sofort per Download lieferbar
7 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
14,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
7 °P sammeln
Herbert Popp
Fundamentalgruppen algebraischer Mannigfaltigkeiten (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.16MB
Andere Kunden interessierten sich auch für
- -23%11Klaus JänichDifferenzierbare G-Mannigfaltigkeiten (eBook, PDF)16,99 €
- -22%11Hans JohnenRäume stetiger Funktionen und Approximation auf kompakten Mannigfaltigkeiten (eBook, PDF)42,99 €
- -35%11Henri CartanÜber den Vorbereitungssatz von Weierstraß / Elliptische Differentialoperatoren auf Mannigfaltigkeiten (eBook, PDF)35,96 €
- -22%11E. SpernerBeziehungen zwischen geometrischer und algebraischer Anordnung (eBook, PDF)42,99 €
- Wolfram JehneDie Struktur der symplektischen Gruppe über lokalen und dedekindschen Ringen (eBook, PDF)42,99 €
- -22%11Felix KleinVorlesungen Über Höhere Geometrie (eBook, PDF)42,99 €
- -26%11Helmut KochGaloissche Theorie der p-Erweiterungen (eBook, PDF)36,99 €
- -25%11
- -22%11
- -21%11
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 156
- Erscheinungstermin: 15. November 2006
- Deutsch
- ISBN-13: 9783540364467
- Artikelnr.: 53328584
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Die Fundamentalgruppe normaler Schemata. Der klassische Fall.- Vier Sätze der algebraischen Geometrie.- Ein Erzeugendensystem für ? 1 (z) (X-C), wenn X eine reguläre, einfach zusammenhängende, projektive Mannigfaltigkeit der Dimension ? 2 ist und die HyperfLäche C nur normale Schnitte als Singularitäten hat.- Das Verhalten zahm verzweigter Überlageruncen in Lokalen.- Die Struktur der Faktorkommutatorgruppe von ? 1 (z) (Pn-C). Erzeugende und Relationen für ? 1 (z) (pn-C), wenn C nur nhormale Schnitte als Singularitäten hat.- Die Struktur von ? 1 (z) (X-C), falls X eine irreduzible, reguläre, projektive Fläche ist und die Kurve C "nicht zu grosse" Singularitäten hat.- Anwendungen und Beispiele.- Einiges über Überlagerungen von Kurven.- Überlagerungen von Produkten. Unabhängigkeit von ?1(X) bei Konstantenerweiterung. Deformation und Hochheben Etaler Überlagerungen.- Zurück zu Kurven. Hochhjeben von Kurven nach Charakteristik O unter Erhaltung des Geschlechts.- Die Struktur des p-primen Teils der Fundamentalgruppe einer irreduziblen, projektiven und regulären Kurve vom Geschlecht g in Charakteristik p>0.- Die Struktur des p-primen Teils der Fundamentalgruppe einer in n Punkten Punktierten, projektiven Kurve in Charakteristik p>0.- Anwendungen der Sätze (11.4) und (12.1). Besonderheiten bei wilder Verzweigung. Beispiele und abschliessende Bemerkungen über Überlagerungen von Kurven.- Zurück Zu Flächen. Das Verhalten von ?1(X-C), wenn die Kurve C in einer algebraischen Familie auf der Fläche X variiert. Anwendungen.- Einige offene Fragen.
Die Fundamentalgruppe normaler Schemata. Der klassische Fall.- Vier Sätze der algebraischen Geometrie.- Ein Erzeugendensystem für ? 1 (z) (X-C), wenn X eine reguläre, einfach zusammenhängende, projektive Mannigfaltigkeit der Dimension ? 2 ist und die HyperfLäche C nur normale Schnitte als Singularitäten hat.- Das Verhalten zahm verzweigter Überlageruncen in Lokalen.- Die Struktur der Faktorkommutatorgruppe von ? 1 (z) (Pn-C). Erzeugende und Relationen für ? 1 (z) (pn-C), wenn C nur nhormale Schnitte als Singularitäten hat.- Die Struktur von ? 1 (z) (X-C), falls X eine irreduzible, reguläre, projektive Fläche ist und die Kurve C "nicht zu grosse" Singularitäten hat.- Anwendungen und Beispiele.- Einiges über Überlagerungen von Kurven.- Überlagerungen von Produkten. Unabhängigkeit von ?1(X) bei Konstantenerweiterung. Deformation und Hochheben Etaler Überlagerungen.- Zurück zu Kurven. Hochhjeben von Kurven nach Charakteristik O unter Erhaltung des Geschlechts.- Die Struktur des p-primen Teils der Fundamentalgruppe einer irreduziblen, projektiven und regulären Kurve vom Geschlecht g in Charakteristik p>0.- Die Struktur des p-primen Teils der Fundamentalgruppe einer in n Punkten Punktierten, projektiven Kurve in Charakteristik p>0.- Anwendungen der Sätze (11.4) und (12.1). Besonderheiten bei wilder Verzweigung. Beispiele und abschliessende Bemerkungen über Überlagerungen von Kurven.- Zurück Zu Flächen. Das Verhalten von ?1(X-C), wenn die Kurve C in einer algebraischen Familie auf der Fläche X variiert. Anwendungen.- Einige offene Fragen.