Classical Fourier analysis has been a cornerstone of mathematics and engineering for centuries, playing a vital role in solving problems in fields like signal processing, differential equations, and quantum mechanics. We delve into the rich history of Fourier analysis, tracing its development from Joseph Fourier's groundbreaking work to modern digital signal processing applications.
Starting with an overview of fundamental concepts and motivations behind Fourier analysis, we introduce Fourier series and transforms, exploring their properties, convergence, and applications. We discuss periodic and non-periodic functions, convergence phenomena, and important theorems such as Parseval's identity and the Fourier inversion theorem.
Throughout the book, we emphasize both theoretical insights and practical applications, providing a balanced understanding of Fourier analysis and its relevance to real-world problems. Topics include harmonic analysis, orthogonal functions, Fourier integrals, and Fourier transforms, with applications in signal processing, data compression, and partial differential equations.
Each chapter includes examples, illustrations, and exercises to reinforce key concepts. Historical insights into key mathematicians and scientists' contributions are also provided.
Whether you are a student, researcher, or practitioner in mathematics, engineering, or related fields, "Fundamentals of Classical Fourier Analysis" is a comprehensive and accessible resource for mastering Fourier analysis principles and techniques.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.