Sterling K. Berberian
Fundamentals of Real Analysis (eBook, PDF)
56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
56,95 €
Als Download kaufen
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
Sterling K. Berberian
Fundamentals of Real Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Integration theory and general topology form the core of this textbook for a first-year graduate course in real analysis. After the foundational material in the first chapter (construction of the reals, cardinal and ordinal numbers, Zorn's lemma and transfinite induction), measure, integral and topology are introduced and developed as recurrent themes of increasing depth.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 87.46MB
Andere Kunden interessierten sich auch für
Corneliu ConstantinescuAdvanced Integration Theory (eBook, PDF)112,95 €
Alan F. BeardonLimits (eBook, PDF)40,95 €
Edwin HewittAbstract Harmonic Analysis (eBook, PDF)88,95 €
Sterling K. BerberianA First Course in Real Analysis (eBook, PDF)40,95 €
Matthew A. PonsReal Analysis for the Undergraduate (eBook, PDF)38,95 €
Murray H. ProtterA First Course in Real Analysis (eBook, PDF)42,95 €
Functional Equations and Inequalities (eBook, PDF)72,95 €-
-
-
Integration theory and general topology form the core of this textbook for a first-year graduate course in real analysis. After the foundational material in the first chapter (construction of the reals, cardinal and ordinal numbers, Zorn's lemma and transfinite induction), measure, integral and topology are introduced and developed as recurrent themes of increasing depth.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 479
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461205494
- Artikelnr.: 44179462
- Verlag: Springer US
- Seitenzahl: 479
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461205494
- Artikelnr.: 44179462
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Foundations.- 1.1. Logic, set notations.- 1.2. Relations.- 1.3. Functions (mappings).- 1.4. Product sets, axiom of choice.- 1.5. Inverse functions.- 1.6. Equivalence relations, partitions, quotient sets.- 1.7. Order relations.- 1.8. Real numbers.- 1.9. Finite and infinite sets.- 1.10. Countable and uncountable sets.- 1.11. Zorn's lemma, the well-ordering theorem.- 1.12. Cardinality.- 1.13. Cardinal arithmetic, the continuum hypothesis.- 1.14. Ordinality.- 1.15. Extended real numbers.- 1.16. limsup, liminf, convergence in ?.- 2 Lebesgue Measure.- 2.1. Lebesgue outer measure on ?.- 2.2. Measurable sets.- 2.3. Cantor set: an uncountable set of measure zero.- 2.4. Borel sets, regularity.- 2.5. A nonmeasurable set.- 2.6. Abstract measure spaces.- 3 Topology.- 3.1. Metric spaces: examples.- 3.2. Convergence, closed sets and open sets in metric spaces.- 3.3. Topological spaces.- 3.4. Continuity.- 3.5. Limit of a function.- 4 Lebesgue Integral.- 4.1. Measurable functions.- 4.2. a.e..- 4.3. Integrable simple functions.- 4.4. Integrable functions.- 4.5. Monotone convergence theorem, Fatou's lemma.- 4.6. Monotone classes.- 4.7. Indefinite integrals.- 4.8. Finite signed measures.- 5 Differentiation.- 5.1. Bounded variation, absolute continuity.- 5.2. Lebesgue's representation of AC functions.- 5.3. limsup, liminf of functions; Dini derivates.- 5.4. Criteria for monotonicity.- 5.5. Semicontinuity.- 5.6. Semicontinuous approximations of integrable functions.- 5.7. F. Riesz's "Rising sun lemma".- 5.8. Growth estimates of a continuous increasing function.- 5.9. Indefinite integrals are a.e. primitives.- 5.10. Lebesgue's "Fundamental theorem of calculus".- 5.11. Measurability of derivates of a monotone function.- 5.12. Lebesgue decomposition of a function of bounded variation.- 5.13. Lebesgue's criterion for Riemann-integrability.- 6 Function Spaces.- 6.1. Compact metric spaces.- 6.2. Uniform convergence, iterated limits theorem.- 6.3. Complete metric spaces.- 6.4. L1.- 6.5. Real and complex measures.- 6.6. L?.- 6.7. LP(1 < p < ?).- 6.8.C(X).- 6.9. Stone-Weierstrass approximation theorem.- 7 Product Measure.- 7.1. Extension of measures.- 7.2. Product measures.- 7.3. Iterated integrals, Fubini-Tonelli theorem for finite measures.- 7.4. Fubini-Tonelli theorem for o--finite measures.- 8 The Differential Equation y' =f (xy).- 8.1. Equicontinuity, Ascoli's theorem.- 8.2. Picard's existence theorem for y' =f (xy).- 8.3. Peano's existence theorem for y' =f (xy).- 9 Topics in Measure and Integration.- 9.1. Jordan-Hahn decomposition of a signed measure.- 9.2. Radon-Nikodym theorem.- 9.3. Lebesgue decomposition of measures.- 9.4. Convolution in L1(?).- 9.5. Integral operators (with continuous kernel function).- Index of Notations.
1 Foundations.- 1.1. Logic, set notations.- 1.2. Relations.- 1.3. Functions (mappings).- 1.4. Product sets, axiom of choice.- 1.5. Inverse functions.- 1.6. Equivalence relations, partitions, quotient sets.- 1.7. Order relations.- 1.8. Real numbers.- 1.9. Finite and infinite sets.- 1.10. Countable and uncountable sets.- 1.11. Zorn's lemma, the well-ordering theorem.- 1.12. Cardinality.- 1.13. Cardinal arithmetic, the continuum hypothesis.- 1.14. Ordinality.- 1.15. Extended real numbers.- 1.16. limsup, liminf, convergence in ?.- 2 Lebesgue Measure.- 2.1. Lebesgue outer measure on ?.- 2.2. Measurable sets.- 2.3. Cantor set: an uncountable set of measure zero.- 2.4. Borel sets, regularity.- 2.5. A nonmeasurable set.- 2.6. Abstract measure spaces.- 3 Topology.- 3.1. Metric spaces: examples.- 3.2. Convergence, closed sets and open sets in metric spaces.- 3.3. Topological spaces.- 3.4. Continuity.- 3.5. Limit of a function.- 4 Lebesgue Integral.- 4.1. Measurable functions.- 4.2. a.e..- 4.3. Integrable simple functions.- 4.4. Integrable functions.- 4.5. Monotone convergence theorem, Fatou's lemma.- 4.6. Monotone classes.- 4.7. Indefinite integrals.- 4.8. Finite signed measures.- 5 Differentiation.- 5.1. Bounded variation, absolute continuity.- 5.2. Lebesgue's representation of AC functions.- 5.3. limsup, liminf of functions; Dini derivates.- 5.4. Criteria for monotonicity.- 5.5. Semicontinuity.- 5.6. Semicontinuous approximations of integrable functions.- 5.7. F. Riesz's "Rising sun lemma".- 5.8. Growth estimates of a continuous increasing function.- 5.9. Indefinite integrals are a.e. primitives.- 5.10. Lebesgue's "Fundamental theorem of calculus".- 5.11. Measurability of derivates of a monotone function.- 5.12. Lebesgue decomposition of a function of bounded variation.- 5.13. Lebesgue's criterion for Riemann-integrability.- 6 Function Spaces.- 6.1. Compact metric spaces.- 6.2. Uniform convergence, iterated limits theorem.- 6.3. Complete metric spaces.- 6.4. L1.- 6.5. Real and complex measures.- 6.6. L?.- 6.7. LP(1 < p < ?).- 6.8.C(X).- 6.9. Stone-Weierstrass approximation theorem.- 7 Product Measure.- 7.1. Extension of measures.- 7.2. Product measures.- 7.3. Iterated integrals, Fubini-Tonelli theorem for finite measures.- 7.4. Fubini-Tonelli theorem for o--finite measures.- 8 The Differential Equation y' =f (xy).- 8.1. Equicontinuity, Ascoli's theorem.- 8.2. Picard's existence theorem for y' =f (xy).- 8.3. Peano's existence theorem for y' =f (xy).- 9 Topics in Measure and Integration.- 9.1. Jordan-Hahn decomposition of a signed measure.- 9.2. Radon-Nikodym theorem.- 9.3. Lebesgue decomposition of measures.- 9.4. Convolution in L1(?).- 9.5. Integral operators (with continuous kernel function).- Index of Notations.







