160,95 €
160,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
80 °P sammeln
160,95 €
160,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
80 °P sammeln
Als Download kaufen
160,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
80 °P sammeln
Jetzt verschenken
160,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
80 °P sammeln
  • Format: ePub

Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri

Produktbeschreibung
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Jian Qing Shi, Ph.D., is a senior lecturer in statistics and the leader of the Applied Statistics and Probability Group at Newcastle University. He is a fellow of the Royal Statistical Society and associate editor of the Journal of the Royal Statistical Society (Series C). His research interests encompass functional data analysis using covariance kernel, incomplete data and model uncertainty, and covariance structural analysis and latent variable models.

Taeryon Choi, Ph.D., is an associate professor of statistics at Korea University. His research mainly focuses on the use of Bayesian methods and theory for various scientific problems.