Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks.
Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The book consists of 14 papers and an introduction. The applications it considers clearly demonstrate the maturity of GP techniques, and their ability to efficiently address difficult problem instances. ... A specialized audience of experts in genetic algorithms will find state-of-the-art applications and methodologies in this book. It will also be of interest to practitioners for the large number of applications discussed, and to advanced students and researchers for the numerous opportunities for investigation and thesis topics." (Renato De Leone, ACM Computing Reviews, July, 2011)