Ju Han Kim
Genome Data Analysis (eBook, PDF)
68,95 €
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
68,95 €
Als Download kaufen
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
34 °P sammeln
Ju Han Kim
Genome Data Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 32.75MB
Andere Kunden interessierten sich auch für
Translational Informatics in Smart Healthcare (eBook, PDF)88,95 €
Healthcare and Big Data Management (eBook, PDF)88,95 €
Translational Biomedical Informatics (eBook, PDF)112,95 €
Computational Biology of Non-Coding RNA (eBook, PDF)167,95 €
Essentials of Bioinformatics, Volume I (eBook, PDF)175,95 €
Microarray Bioinformatics (eBook, PDF)120,95 €
Theodor SperleaMultiple Sequenzalignments (eBook, PDF)14,99 €-
-
-
Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 367
- Erscheinungstermin: 30. April 2019
- Englisch
- ISBN-13: 9789811319426
- Artikelnr.: 59932869
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Professor. Ju Han Kim, Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul , South Korea.
Part 1. BIOINFORMATICS FOR LIFE AND PERSONAL GENOME INTERPRETATION.- Chapter 1. Bioinformatics For Life.- Chapter 2. Next Generation Sequencing and Personal Genome Data Analysis.- Chapter 3. Personal Genome Data Analysis.- Chapter 4. Personal Genome Interpretation and Disease Risk Prediction.- Part 2. ADVANCED MICROARRAY DATA ANALYSIS.- Chapter 5. Advanced Microarray Data Analysis.- Chapter 6. Gene Expression Data Analysis.- Chapter 7. Gene Ontology and Biological Pathway-based Analysis.- Chapter 8. Gene-set Approaches and Prognostic Subgroup Prediction.- Chapter 9. MicroRNA Data Analysis.- Part 3. NETWORK BIOLOGY, SEQUENCE, PATHWAY AND ONTOLOGY INFORMATICS.- Chapter 10. Network Biology, Sequence, Pathway and Ontology Informatics.- Chapter 11. Motif and Regulatory Sequence Analysis.- Chapter 12. Molecular Pathways and Gene Ontology.- Chapter 13. Biological Network Analysis.- Part 4. SNPS, GWAS AND CNVS, INFORMATICS FOR GENOME VARIANTS.- Chapter 14. SNPs, GWAS, CNVs: Informatics for Human Genome Variations.- Chapter 15. SNP Data Analysis.- Chapter 16. GWAS Data Analysis.- Chapter 17. CNV Data Analysis.- Part 5. METAGENOME AND EPIGENOME, BASIC DATA ANALYSIS.- Chapter 18. Metagenome and Epigenome Data Analysis.- Chapter 19. Metagenome Data Analysis.- Chapter 20. Epigenome Databases and Tools.- Chapter 21. Epigenome Data Analysis.- Appendix A. BASIC PRACTICE USING R FOR DATA ANALYSIS.- Appendix B. APPLICATION PROGRAM FOR GENOME DATA ANALYSIS INSTALL GUIDE.
Part 1. BIOINFORMATICS FOR LIFE AND PERSONAL GENOME INTERPRETATION.- Chapter 1. Bioinformatics For Life.- Chapter 2. Next Generation Sequencing and Personal Genome Data Analysis.- Chapter 3. Personal Genome Data Analysis.- Chapter 4. Personal Genome Interpretation and Disease Risk Prediction.- Part 2. ADVANCED MICROARRAY DATA ANALYSIS.- Chapter 5. Advanced Microarray Data Analysis.- Chapter 6. Gene Expression Data Analysis.- Chapter 7. Gene Ontology and Biological Pathway-based Analysis.- Chapter 8. Gene-set Approaches and Prognostic Subgroup Prediction.- Chapter 9. MicroRNA Data Analysis.- Part 3. NETWORK BIOLOGY, SEQUENCE, PATHWAY AND ONTOLOGY INFORMATICS.- Chapter 10. Network Biology, Sequence, Pathway and Ontology Informatics.- Chapter 11. Motif and Regulatory Sequence Analysis.- Chapter 12. Molecular Pathways and Gene Ontology.- Chapter 13. Biological Network Analysis.- Part 4. SNPS, GWAS AND CNVS, INFORMATICS FOR GENOME VARIANTS.- Chapter 14. SNPs, GWAS, CNVs: Informatics for Human Genome Variations.- Chapter 15. SNP Data Analysis.- Chapter 16. GWAS Data Analysis.- Chapter 17. CNV Data Analysis.- Part 5. METAGENOME AND EPIGENOME, BASIC DATA ANALYSIS.- Chapter 18. Metagenome and Epigenome Data Analysis.- Chapter 19. Metagenome Data Analysis.- Chapter 20. Epigenome Databases and Tools.- Chapter 21. Epigenome Data Analysis.- Appendix A. BASIC PRACTICE USING R FOR DATA ANALYSIS.- Appendix B. APPLICATION PROGRAM FOR GENOME DATA ANALYSIS INSTALL GUIDE.







