Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir dir den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Harnessing Artificial Intelligence-Enhanced Graph Models for Biological Discovery (eBook, ePUB)
Unveiling Biological Frontiers Redaktion: Jha, Sudan; Pani, Subhendukumar; Ahmad, Sultan
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Harnessing Artificial Intelligence-Enhanced Graph Models for Biological Discovery: Unveiling Biological Frontiers introduces revolutionary techniques that merge artificial intelligence with graph-based methods to uncover complex biological networks. Through detailed examples and case studies, the book provides researchers and practitioners the essential tools to analyze molecular interactions, identify key biomarkers, and hasten the discovery of novel therapeutics. Chapters delve into the sophisticated interplay between advanced AI techniques and graph models, specially designed to decode the…mehr
Harnessing Artificial Intelligence-Enhanced Graph Models for Biological Discovery: Unveiling Biological Frontiers introduces revolutionary techniques that merge artificial intelligence with graph-based methods to uncover complex biological networks. Through detailed examples and case studies, the book provides researchers and practitioners the essential tools to analyze molecular interactions, identify key biomarkers, and hasten the discovery of novel therapeutics. Chapters delve into the sophisticated interplay between advanced AI techniques and graph models, specially designed to decode the intricacies of biological systems. By utilizing cutting-edge AI algorithms, readers can explore complex biological networks, forecast molecular interactions, and pinpoint new drug targets with exceptional precision. - Offers an innovative approach by combining artificial intelligence with graph-based techniques to delve into complex biological networks - Includes practical examples and case studies, providing researchers and practitioners with the tools they need to analyze molecular interactions and identify crucial biomarkers - Enables researchers to predict molecular interactions and identify novel drug targets with unparalleled accuracy and efficiency - Unlocks new avenues for biological discovery, facilitating precise and effective research outcomes
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1. Introduction to AI-powered graph models in biological sciences Sudan Jha and Chandan Upadhyaya 2. Fundamentals of graph theory and biological networks Edgar Ceh-Varela and Sarbagya Ratna Shakya 3. Leveraging Natural Language Processing and Graph Models for Sarcasm Detection in Text: Applications in Health Informatics and Biomedical Research Manish Chandra Roy, Sukant Kishoro Bisoy and Pradipta Kumar Das 4. Graph-Driven Machine Learning Frameworks for Survival Prediction in Colon Cancer Genomics Pinakshi Panda, Sukant Kishoro Bisoy and Subhendu Kumar Pani 5. Network Modeling in Drug-Disease Systems Prediction: A Review Md. Alimul Haque, Farheen Islam, Sultan Ahmad, Md. Alamgir Hossain and Sangeeta Kumari 6. Exploring Gene Expression Changes in Drosophila melanogaster with RNA-Sequencing Data Analysis Sarah Raza, Oroos Zohra, Md. Alimul Haque and Benazeer Zohra 7. Biomedical Research Tools, Applications, and Case Studies Aman Anand, Praveen, Rajendra Kumar, Sudan Jha and Jaya Sinha 8. Integrating Graph Neural Networks for Predictive Modeling in Complex Biological Systems Ankit Bansal, Aman Anand, Nikita Verma, Neetu Singh and Rajendra Kumar 9. Ethical Considerations in AI-Powered Healthcare and Data Security Kritika Rana, Gaurav Gupta and Sultan Ahmad 10. AI-Enhanced Drug Discovery and Repurposing Using Graph Models Sangam Ghimire, Nirjal Bhurtel and Sudan Jha 11. Intelligent Genetic Algorithm-Based Computational Neuroscience Model to Detect Epileptic Haewon Byeon, Azzah AlGhamdi, Ismail Keshta and Mukesh Soni
1. Introduction to AI-powered graph models in biological sciences Sudan Jha and Chandan Upadhyaya 2. Fundamentals of graph theory and biological networks Edgar Ceh-Varela and Sarbagya Ratna Shakya 3. Leveraging Natural Language Processing and Graph Models for Sarcasm Detection in Text: Applications in Health Informatics and Biomedical Research Manish Chandra Roy, Sukant Kishoro Bisoy and Pradipta Kumar Das 4. Graph-Driven Machine Learning Frameworks for Survival Prediction in Colon Cancer Genomics Pinakshi Panda, Sukant Kishoro Bisoy and Subhendu Kumar Pani 5. Network Modeling in Drug-Disease Systems Prediction: A Review Md. Alimul Haque, Farheen Islam, Sultan Ahmad, Md. Alamgir Hossain and Sangeeta Kumari 6. Exploring Gene Expression Changes in Drosophila melanogaster with RNA-Sequencing Data Analysis Sarah Raza, Oroos Zohra, Md. Alimul Haque and Benazeer Zohra 7. Biomedical Research Tools, Applications, and Case Studies Aman Anand, Praveen, Rajendra Kumar, Sudan Jha and Jaya Sinha 8. Integrating Graph Neural Networks for Predictive Modeling in Complex Biological Systems Ankit Bansal, Aman Anand, Nikita Verma, Neetu Singh and Rajendra Kumar 9. Ethical Considerations in AI-Powered Healthcare and Data Security Kritika Rana, Gaurav Gupta and Sultan Ahmad 10. AI-Enhanced Drug Discovery and Repurposing Using Graph Models Sangam Ghimire, Nirjal Bhurtel and Sudan Jha 11. Intelligent Genetic Algorithm-Based Computational Neuroscience Model to Detect Epileptic Haewon Byeon, Azzah AlGhamdi, Ismail Keshta and Mukesh Soni
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826