Health Information Processing (eBook, PDF)
9th China Health Information Processing Conference, CHIP 2023, Hangzhou, China, October 27-29, 2023, Proceedings
Redaktion: Xu, Hua; Huang, Zhengxing; Hao, Tianyong; Tang, Buzhou; Liu, Lei; Wu, Fei; Lin, Hongfei; Chen, Qingcai
69,95 €
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
35 °P sammeln
69,95 €
Als Download kaufen
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
35 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
35 °P sammeln
Health Information Processing (eBook, PDF)
9th China Health Information Processing Conference, CHIP 2023, Hangzhou, China, October 27-29, 2023, Proceedings
Redaktion: Xu, Hua; Huang, Zhengxing; Hao, Tianyong; Tang, Buzhou; Liu, Lei; Wu, Fei; Lin, Hongfei; Chen, Qingcai
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 9th China Health Information Processing Conference, CHIP 2023, held in Hangzhou, China, during October 27-29, 2023. The 27 full papers included in this book were carefully reviewed and selected from 66 submissions. They were organized in topical sections as follows: healthcare information extraction; healthcare natural language processing; healthcare data mining and applications.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 32.17MB
Andere Kunden interessierten sich auch für
- Health Information Processing (eBook, PDF)61,95 €
- Health Information Processing. Evaluation Track Papers (eBook, PDF)61,95 €
- Health Information Processing. Evaluation Track Papers (eBook, PDF)57,95 €
- Health Information Science (eBook, PDF)40,95 €
- Health Information Science (eBook, PDF)40,95 €
- Health Information Science (eBook, PDF)40,95 €
- Health Information Science (eBook, PDF)40,95 €
-
-
-
This book constitutes the refereed proceedings of the 9th China Health Information Processing Conference, CHIP 2023, held in Hangzhou, China, during October 27-29, 2023.
The 27 full papers included in this book were carefully reviewed and selected from 66 submissions. They were organized in topical sections as follows: healthcare information extraction; healthcare natural language processing; healthcare data mining and applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 432
- Erscheinungstermin: 1. Februar 2024
- Englisch
- ISBN-13: 9789819998647
- Artikelnr.: 69909454
- Verlag: Springer Nature Singapore
- Seitenzahl: 432
- Erscheinungstermin: 1. Februar 2024
- Englisch
- ISBN-13: 9789819998647
- Artikelnr.: 69909454
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
TIG-KIGNN: Time Interval Guided Knowledge Inductive Graph Neural Network for misinformation detection from Social Media.- A Bert based relation extraction method with inter-entity constraints for Chinese EHRs.- Automatic Generation of Discharge Summary of EMRs Based on Multi-granularity Information Fusion.- A BART-based Study of Entity-Relationship Extraction for Electronic Medical Records of Cardiovascular Diseases.- Multilevel Asynchronous Time Network for Medication Recommendation.- Biomedical Event Detection of Based on Dependency Analysis and Graph Convolution Network.- Multi-head Attention and Graph Convolutional Networks with Regularized Dropout for Biomedical Relation Extraction.- Privacy-preserving Medical Dialogue Generation Based on Federated Learning.- Cross-Lingual Name Entity Recognition from Clinical Text using Mixed Language Query.- PEMRC: A Positive Enhanced Machine Reading Comprehension Method for Few-Shot Named Entity Recognition in Biomedical Domain.- Research on Double-Graphs Knowledge-Enhanced Intelligent Diagnosis.- FgKF: Fine-grained Knowledge Fusion for Radiology Report Generation.- Medical Entity recognition with few-shot based on Chinese character radicals.- Biomedical causal relation extraction incorporated with external knowledge.- Research on structured lung cancer electronic medical records based on BART joint extraction.- Biomedical Named Entity Recognition Based on Multi-task Learning.- Biomedical Relation Extraction via Syntax-Enhanced Contrastive Networks.- Entity Fusion Contrastive Inference Network for Biomedical Document Relation Extraction.- An Unsupervised Clinical Acronym Disambiguation Method based on Pretrained Language Model.- Combining Biaffine Model and Constraints Inference for Chinese Clinical Temporal Relation Extraction.- Automatic Prediction of Multiple Associated Diseases Using A Dual-attention Neural Network Model.- Chapter-level Stepwise Temporal Relation Extraction Based on Event Information for Chinese Clinical Medical Texts.- Constructing a Multi-scale Medical Knowledge Graph from Electronic Medical Records.- Double Graph Convolution Network with Knowledge Distillation for International Media Portrait Analysis of COVID-19.- A Simple but Useful Multi-corpus Transferring Method for Biomedical Named Entity Recognition.- Time Series Prediction Models for Assisting the Diagnosis and Treatment of Gouty Arthritis.- Asymptomatic carriers are associated with shorter negative conversion time in children with Omicron infections.
TIG-KIGNN: Time Interval Guided Knowledge Inductive Graph Neural Network for misinformation detection from Social Media.- A Bert based relation extraction method with inter-entity constraints for Chinese EHRs.- Automatic Generation of Discharge Summary of EMRs Based on Multi-granularity Information Fusion.- A BART-based Study of Entity-Relationship Extraction for Electronic Medical Records of Cardiovascular Diseases.- Multilevel Asynchronous Time Network for Medication Recommendation.- Biomedical Event Detection of Based on Dependency Analysis and Graph Convolution Network.- Multi-head Attention and Graph Convolutional Networks with Regularized Dropout for Biomedical Relation Extraction.- Privacy-preserving Medical Dialogue Generation Based on Federated Learning.- Cross-Lingual Name Entity Recognition from Clinical Text using Mixed Language Query.- PEMRC: A Positive Enhanced Machine Reading Comprehension Method for Few-Shot Named Entity Recognition in Biomedical Domain.- Research on Double-Graphs Knowledge-Enhanced Intelligent Diagnosis.- FgKF: Fine-grained Knowledge Fusion for Radiology Report Generation.- Medical Entity recognition with few-shot based on Chinese character radicals.- Biomedical causal relation extraction incorporated with external knowledge.- Research on structured lung cancer electronic medical records based on BART joint extraction.- Biomedical Named Entity Recognition Based on Multi-task Learning.- Biomedical Relation Extraction via Syntax-Enhanced Contrastive Networks.- Entity Fusion Contrastive Inference Network for Biomedical Document Relation Extraction.- An Unsupervised Clinical Acronym Disambiguation Method based on Pretrained Language Model.- Combining Biaffine Model and Constraints Inference for Chinese Clinical Temporal Relation Extraction.- Automatic Prediction of Multiple Associated Diseases Using A Dual-attention Neural Network Model.- Chapter-level Stepwise Temporal Relation Extraction Based on Event Information for Chinese Clinical Medical Texts.- Constructing a Multi-scale Medical Knowledge Graph from Electronic Medical Records.- Double Graph Convolution Network with Knowledge Distillation for International Media Portrait Analysis of COVID-19.- A Simple but Useful Multi-corpus Transferring Method for Biomedical Named Entity Recognition.- Time Series Prediction Models for Assisting the Diagnosis and Treatment of Gouty Arthritis.- Asymptomatic carriers are associated with shorter negative conversion time in children with Omicron infections.