Health Information Processing (eBook, PDF)
10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings, Part II
Redaktion: Zhang, Yanchun; Huang, Zhengxing; Hao, Tianyong; Tang, Buzhou; Liao, Xiangwen; Liu, Lei; Lin, Hongfei; Chen, Qingcai
56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
56,95 €
Als Download kaufen
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
Health Information Processing (eBook, PDF)
10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings, Part II
Redaktion: Zhang, Yanchun; Huang, Zhengxing; Hao, Tianyong; Tang, Buzhou; Liao, Xiangwen; Liu, Lei; Lin, Hongfei; Chen, Qingcai
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This two-volume set CCIS 2432-2433 constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, during November 15-17, 2024.
The 32 full papers included in this set were carefully reviewed and selected from 65 submissions.
They are organized in topical sections as follows: biomedical data processing and model application; mental health and disease prediction; and drug prediction and knowledge map.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 30.38MB
Andere Kunden interessierten sich auch für
Health Information Processing (eBook, PDF)60,95 €
Health Information Processing. Evaluation Track Papers (eBook, PDF)56,95 €
Health Information Processing (eBook, PDF)72,95 €
Health Information Processing (eBook, PDF)60,95 €
Health Information Processing. Evaluation Track Papers (eBook, PDF)64,95 €
Health Information Science (eBook, PDF)40,95 €
Health Information Processing. Evaluation Track Papers (eBook, PDF)60,95 €-
-
-
This two-volume set CCIS 2432-2433 constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, during November 15-17, 2024.
The 32 full papers included in this set were carefully reviewed and selected from 65 submissions.
They are organized in topical sections as follows: biomedical data processing and model application; mental health and disease prediction; and drug prediction and knowledge map.
The 32 full papers included in this set were carefully reviewed and selected from 65 submissions.
They are organized in topical sections as follows: biomedical data processing and model application; mental health and disease prediction; and drug prediction and knowledge map.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 286
- Erscheinungstermin: 10. April 2025
- Englisch
- ISBN-13: 9789819637522
- Artikelnr.: 73854592
- Verlag: Springer Nature Singapore
- Seitenzahl: 286
- Erscheinungstermin: 10. April 2025
- Englisch
- ISBN-13: 9789819637522
- Artikelnr.: 73854592
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- Mental health and disease prediction.
.- Data Augmentation and Instruction Fine-Tuning for ADR Detection.
.- Deep Fusion Network with Feature Engineering for Discharge Risk Assessment.
.- Analysis of Risk Factors for Hemorrhagic Complications in Pediatric Acute Liver Failure.
.- PMFNet: Pseudo-modal fusion network for obstructive sleep apnea detection using single-lead ECG signals.
.- VisionLLM-based Multimodal Fusion Network for Glottic Carcinoma Early Detection.
.- RAG Combined with Instruction Tuning for Traditional Chinese Medicine Syndrome Differentiation Thinking.
.- Drug prediction and Knowledge map.
.- MBF-DTI: A fused multi-dimensional biochemical feature-based drug target prediction method based on heterogeneous graph attention networks.
.- Structure and pseudo-ligand based drug discovery for disease targets.
.- Multi-channel hypergraph convolutional network predicts circRNA-drug sensitivity associations.
.- Knowledge Infusion Framework with LLMs for Few-Shot Biomedical Relation Extraction.
.- A review of drug-target interaction prediction methods.
.- The Joint Entity-Relation Extraction Model Based on Span and Interactive Fusion Representation for Chinese Medical Texts with Complex Semantics.
.- Multi-task learning-based knowledge graph question answering for pediatric epilepsy.
.- Hypertension Medication Recommendation Based on Synergy and Selectivity of Heterogeneous Medical Entities.
.- Integrating TCM's "One Root of Medicine and Food" Principle into Dietary Recommendations with Retrieval-Augmented LLMs.
.- OAGLLM: A Retrieval-Augmented Large Language Model for Medication Instructions.
.- Data Augmentation and Instruction Fine-Tuning for ADR Detection.
.- Deep Fusion Network with Feature Engineering for Discharge Risk Assessment.
.- Analysis of Risk Factors for Hemorrhagic Complications in Pediatric Acute Liver Failure.
.- PMFNet: Pseudo-modal fusion network for obstructive sleep apnea detection using single-lead ECG signals.
.- VisionLLM-based Multimodal Fusion Network for Glottic Carcinoma Early Detection.
.- RAG Combined with Instruction Tuning for Traditional Chinese Medicine Syndrome Differentiation Thinking.
.- Drug prediction and Knowledge map.
.- MBF-DTI: A fused multi-dimensional biochemical feature-based drug target prediction method based on heterogeneous graph attention networks.
.- Structure and pseudo-ligand based drug discovery for disease targets.
.- Multi-channel hypergraph convolutional network predicts circRNA-drug sensitivity associations.
.- Knowledge Infusion Framework with LLMs for Few-Shot Biomedical Relation Extraction.
.- A review of drug-target interaction prediction methods.
.- The Joint Entity-Relation Extraction Model Based on Span and Interactive Fusion Representation for Chinese Medical Texts with Complex Semantics.
.- Multi-task learning-based knowledge graph question answering for pediatric epilepsy.
.- Hypertension Medication Recommendation Based on Synergy and Selectivity of Heterogeneous Medical Entities.
.- Integrating TCM's "One Root of Medicine and Food" Principle into Dietary Recommendations with Retrieval-Augmented LLMs.
.- OAGLLM: A Retrieval-Augmented Large Language Model for Medication Instructions.
.- Mental health and disease prediction.
.- Data Augmentation and Instruction Fine-Tuning for ADR Detection.
.- Deep Fusion Network with Feature Engineering for Discharge Risk Assessment.
.- Analysis of Risk Factors for Hemorrhagic Complications in Pediatric Acute Liver Failure.
.- PMFNet: Pseudo-modal fusion network for obstructive sleep apnea detection using single-lead ECG signals.
.- VisionLLM-based Multimodal Fusion Network for Glottic Carcinoma Early Detection.
.- RAG Combined with Instruction Tuning for Traditional Chinese Medicine Syndrome Differentiation Thinking.
.- Drug prediction and Knowledge map.
.- MBF-DTI: A fused multi-dimensional biochemical feature-based drug target prediction method based on heterogeneous graph attention networks.
.- Structure and pseudo-ligand based drug discovery for disease targets.
.- Multi-channel hypergraph convolutional network predicts circRNA-drug sensitivity associations.
.- Knowledge Infusion Framework with LLMs for Few-Shot Biomedical Relation Extraction.
.- A review of drug-target interaction prediction methods.
.- The Joint Entity-Relation Extraction Model Based on Span and Interactive Fusion Representation for Chinese Medical Texts with Complex Semantics.
.- Multi-task learning-based knowledge graph question answering for pediatric epilepsy.
.- Hypertension Medication Recommendation Based on Synergy and Selectivity of Heterogeneous Medical Entities.
.- Integrating TCM's "One Root of Medicine and Food" Principle into Dietary Recommendations with Retrieval-Augmented LLMs.
.- OAGLLM: A Retrieval-Augmented Large Language Model for Medication Instructions.
.- Data Augmentation and Instruction Fine-Tuning for ADR Detection.
.- Deep Fusion Network with Feature Engineering for Discharge Risk Assessment.
.- Analysis of Risk Factors for Hemorrhagic Complications in Pediatric Acute Liver Failure.
.- PMFNet: Pseudo-modal fusion network for obstructive sleep apnea detection using single-lead ECG signals.
.- VisionLLM-based Multimodal Fusion Network for Glottic Carcinoma Early Detection.
.- RAG Combined with Instruction Tuning for Traditional Chinese Medicine Syndrome Differentiation Thinking.
.- Drug prediction and Knowledge map.
.- MBF-DTI: A fused multi-dimensional biochemical feature-based drug target prediction method based on heterogeneous graph attention networks.
.- Structure and pseudo-ligand based drug discovery for disease targets.
.- Multi-channel hypergraph convolutional network predicts circRNA-drug sensitivity associations.
.- Knowledge Infusion Framework with LLMs for Few-Shot Biomedical Relation Extraction.
.- A review of drug-target interaction prediction methods.
.- The Joint Entity-Relation Extraction Model Based on Span and Interactive Fusion Representation for Chinese Medical Texts with Complex Semantics.
.- Multi-task learning-based knowledge graph question answering for pediatric epilepsy.
.- Hypertension Medication Recommendation Based on Synergy and Selectivity of Heterogeneous Medical Entities.
.- Integrating TCM's "One Root of Medicine and Food" Principle into Dietary Recommendations with Retrieval-Augmented LLMs.
.- OAGLLM: A Retrieval-Augmented Large Language Model for Medication Instructions.







