Health Information Processing. Evaluation Track Papers (eBook, PDF)
10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings
Redaktion: Zhang, Yanchun; Lei, Jianbo; Huang, Zhengxing; Hao, Tianyong; Tang, Buzhou; Liao, Xiangwen; Liu, Lei; Lin, Hongfei; Chen, Qingcai; Zong, Hui; Li, Zuofeng
56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
56,95 €
Als Download kaufen
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
Health Information Processing. Evaluation Track Papers (eBook, PDF)
10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings
Redaktion: Zhang, Yanchun; Lei, Jianbo; Huang, Zhengxing; Hao, Tianyong; Tang, Buzhou; Liao, Xiangwen; Liu, Lei; Lin, Hongfei; Chen, Qingcai; Zong, Hui; Li, Zuofeng
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, November 15-17, 2024. The CHIP 2024 Evaluation Track proceedings include 19 full papers which were carefully reviewed and grouped into these topical sections: syndrome differentiation thought in Traditional Chinese Medicine; lymphoma information extraction and automatic coding; and typical case diagnosis consistency.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 33.39MB
Andere Kunden interessierten sich auch für
Health Information Processing (eBook, PDF)60,95 €
Health Information Processing (eBook, PDF)56,95 €
Health Information Processing. Evaluation Track Papers (eBook, PDF)60,95 €
Health Information Processing. Evaluation Track Papers (eBook, PDF)64,95 €
Health Information Processing (eBook, PDF)72,95 €
Health Information Processing (eBook, PDF)60,95 €
Health Information Science (eBook, PDF)40,95 €-
-
-
This book constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, November 15-17, 2024. The CHIP 2024 Evaluation Track proceedings include 19 full papers which were carefully reviewed and grouped into these topical sections: syndrome differentiation thought in Traditional Chinese Medicine; lymphoma information extraction and automatic coding; and typical case diagnosis consistency.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 228
- Erscheinungstermin: 12. April 2025
- Englisch
- ISBN-13: 9789819642984
- Artikelnr.: 73871280
- Verlag: Springer Nature Singapore
- Seitenzahl: 228
- Erscheinungstermin: 12. April 2025
- Englisch
- ISBN-13: 9789819642984
- Artikelnr.: 73871280
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- Syndrome Differentiation Thought in Traditional Chinese Medicine.
.- Overview of the evaluation task for syndrome differentiation thought in traditional Chinese medicine in CHIP2024.
.- Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG.
.- A TCM Syndrome Differentiation Thinking Method Based on Chain of Thought and Knowledge Retrieval Augmentation.
.- Fine-Tuning Large Language Models for Syndrome Differentiation in Traditional Chinese Medicine.
.- Iterative Retrieval Augmentation for Syndrome Differentiation via Large Language Models.
.- Lymphoma Information Extraction and Automatic Coding.
.- Benchmark for Lymphoma Information Extraction and Automated Coding.
.- Overview of the Lymphoma Information Extraction and Automatic Coding Evaluation Task in CHIP 2024.
.- Automatic ICD Code Generation for Lymphoma Using Large Language Models.
.- Lymphoma Tumor Coding and Information Extraction: A Comparative Analysis of Large Language Model-based Methods.
.- Leveraging Chain of Thought for Automated Medical Coding of Lymphoma Cases.
.- Harnessing Retrieval-Augmented LLMs for Training-Free Tumor Coding Classification.
.- Hierarchical Information Extraction and Classification of Lymphoma Tumor Codes Based On LLM.
.- Typical Case Diagnosis Consistenc.
.- Benchmark of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- Overview of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- The Diagnosis of Typical Medical Cases through Optimized Fine-Tuning of Large Language Models.
.- Utilizing Large Language Models Enhanced by Chain-of-Thought for the Diagnosis of Typical Medical Cases.
.- Assessing Diagnostic Consistency in Clinical Cases: A Fine-Tuned LLM Voting and GPT Error Correction Framework.
.- Typical Medical Case Diagnosis with Voting and Answer Discrimination using Fine-tuned LLM.
.- Reliable Typical Case Diagnosis via Optimized Retrieval-Augmented Generation Techniques.
.- Overview of the evaluation task for syndrome differentiation thought in traditional Chinese medicine in CHIP2024.
.- Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG.
.- A TCM Syndrome Differentiation Thinking Method Based on Chain of Thought and Knowledge Retrieval Augmentation.
.- Fine-Tuning Large Language Models for Syndrome Differentiation in Traditional Chinese Medicine.
.- Iterative Retrieval Augmentation for Syndrome Differentiation via Large Language Models.
.- Lymphoma Information Extraction and Automatic Coding.
.- Benchmark for Lymphoma Information Extraction and Automated Coding.
.- Overview of the Lymphoma Information Extraction and Automatic Coding Evaluation Task in CHIP 2024.
.- Automatic ICD Code Generation for Lymphoma Using Large Language Models.
.- Lymphoma Tumor Coding and Information Extraction: A Comparative Analysis of Large Language Model-based Methods.
.- Leveraging Chain of Thought for Automated Medical Coding of Lymphoma Cases.
.- Harnessing Retrieval-Augmented LLMs for Training-Free Tumor Coding Classification.
.- Hierarchical Information Extraction and Classification of Lymphoma Tumor Codes Based On LLM.
.- Typical Case Diagnosis Consistenc.
.- Benchmark of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- Overview of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- The Diagnosis of Typical Medical Cases through Optimized Fine-Tuning of Large Language Models.
.- Utilizing Large Language Models Enhanced by Chain-of-Thought for the Diagnosis of Typical Medical Cases.
.- Assessing Diagnostic Consistency in Clinical Cases: A Fine-Tuned LLM Voting and GPT Error Correction Framework.
.- Typical Medical Case Diagnosis with Voting and Answer Discrimination using Fine-tuned LLM.
.- Reliable Typical Case Diagnosis via Optimized Retrieval-Augmented Generation Techniques.
.- Syndrome Differentiation Thought in Traditional Chinese Medicine.
.- Overview of the evaluation task for syndrome differentiation thought in traditional Chinese medicine in CHIP2024.
.- Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG.
.- A TCM Syndrome Differentiation Thinking Method Based on Chain of Thought and Knowledge Retrieval Augmentation.
.- Fine-Tuning Large Language Models for Syndrome Differentiation in Traditional Chinese Medicine.
.- Iterative Retrieval Augmentation for Syndrome Differentiation via Large Language Models.
.- Lymphoma Information Extraction and Automatic Coding.
.- Benchmark for Lymphoma Information Extraction and Automated Coding.
.- Overview of the Lymphoma Information Extraction and Automatic Coding Evaluation Task in CHIP 2024.
.- Automatic ICD Code Generation for Lymphoma Using Large Language Models.
.- Lymphoma Tumor Coding and Information Extraction: A Comparative Analysis of Large Language Model-based Methods.
.- Leveraging Chain of Thought for Automated Medical Coding of Lymphoma Cases.
.- Harnessing Retrieval-Augmented LLMs for Training-Free Tumor Coding Classification.
.- Hierarchical Information Extraction and Classification of Lymphoma Tumor Codes Based On LLM.
.- Typical Case Diagnosis Consistenc.
.- Benchmark of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- Overview of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- The Diagnosis of Typical Medical Cases through Optimized Fine-Tuning of Large Language Models.
.- Utilizing Large Language Models Enhanced by Chain-of-Thought for the Diagnosis of Typical Medical Cases.
.- Assessing Diagnostic Consistency in Clinical Cases: A Fine-Tuned LLM Voting and GPT Error Correction Framework.
.- Typical Medical Case Diagnosis with Voting and Answer Discrimination using Fine-tuned LLM.
.- Reliable Typical Case Diagnosis via Optimized Retrieval-Augmented Generation Techniques.
.- Overview of the evaluation task for syndrome differentiation thought in traditional Chinese medicine in CHIP2024.
.- Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG.
.- A TCM Syndrome Differentiation Thinking Method Based on Chain of Thought and Knowledge Retrieval Augmentation.
.- Fine-Tuning Large Language Models for Syndrome Differentiation in Traditional Chinese Medicine.
.- Iterative Retrieval Augmentation for Syndrome Differentiation via Large Language Models.
.- Lymphoma Information Extraction and Automatic Coding.
.- Benchmark for Lymphoma Information Extraction and Automated Coding.
.- Overview of the Lymphoma Information Extraction and Automatic Coding Evaluation Task in CHIP 2024.
.- Automatic ICD Code Generation for Lymphoma Using Large Language Models.
.- Lymphoma Tumor Coding and Information Extraction: A Comparative Analysis of Large Language Model-based Methods.
.- Leveraging Chain of Thought for Automated Medical Coding of Lymphoma Cases.
.- Harnessing Retrieval-Augmented LLMs for Training-Free Tumor Coding Classification.
.- Hierarchical Information Extraction and Classification of Lymphoma Tumor Codes Based On LLM.
.- Typical Case Diagnosis Consistenc.
.- Benchmark of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- Overview of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- The Diagnosis of Typical Medical Cases through Optimized Fine-Tuning of Large Language Models.
.- Utilizing Large Language Models Enhanced by Chain-of-Thought for the Diagnosis of Typical Medical Cases.
.- Assessing Diagnostic Consistency in Clinical Cases: A Fine-Tuned LLM Voting and GPT Error Correction Framework.
.- Typical Medical Case Diagnosis with Voting and Answer Discrimination using Fine-tuned LLM.
.- Reliable Typical Case Diagnosis via Optimized Retrieval-Augmented Generation Techniques.







