High-Performance Computing in Finance (eBook, PDF)
Problems, Methods, and Solutions
Redaktion: Dempster, M. A. H.; Vynckier, Erik; Keane, John; Kanniainen, Juho
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
53,95 €
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
High-Performance Computing in Finance (eBook, PDF)
Problems, Methods, and Solutions
Redaktion: Dempster, M. A. H.; Vynckier, Erik; Keane, John; Kanniainen, Juho
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Intended for practitioners, researchers and graduate students in quantitative finance, computer science and related fields, this book serves as a handbook for design and implementation of financial models with relevant numerical methods on different HPC platforms in banks, insurance companies, pensions, asset-management companies and trading firms.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 21.05MB
Andere Kunden interessierten sich auch für
- High-Performance Computing in Finance (eBook, ePUB)53,95 €
- Introduction to Scientific and Technical Computing (eBook, PDF)78,95 €
- High Performance Computing for Big Data (eBook, PDF)46,95 €
- Contemporary High Performance Computing (eBook, PDF)140,95 €
- Steven I. GordonIntroduction to Modeling and Simulation with MATLAB® and Python (eBook, PDF)49,95 €
- Contemporary High Performance Computing (eBook, PDF)45,95 €
- Sunilkumar ManviCloud Computing (eBook, PDF)48,95 €
-
-
-
Intended for practitioners, researchers and graduate students in quantitative finance, computer science and related fields, this book serves as a handbook for design and implementation of financial models with relevant numerical methods on different HPC platforms in banks, insurance companies, pensions, asset-management companies and trading firms.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 636
- Erscheinungstermin: 21. Februar 2018
- Englisch
- ISBN-13: 9781482299670
- Artikelnr.: 53291309
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 636
- Erscheinungstermin: 21. Februar 2018
- Englisch
- ISBN-13: 9781482299670
- Artikelnr.: 53291309
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Michael Dempster is Professor Emeritus, Centre for Financial Research, University of Cambridge. He has held research and teaching appointments at leading universities globally and is founding Editor-in-Chief of Quantitative Finance. His numerous papers and books have won several awards and he is Honorary Fellow of the IFoA, Member of the Academia dei Lincei and Managing Director of Cambridge Systems Associates. Juho Kanniainen is Professor of Financial Engineering at Tampere University of Technology, Finland. He has served as Coordinator of two international EU-programmes, HPC in Finance (www.hpcfinance.eu) and Big Data in Finance (www.bigdatafinance.eu). His research is broadly in quantitative finance focusing on computationally expensive problems and data-driven approaches. John Keane is Professor of Data Engineering in the School of Computer Science at the University of Manchester, UK. As part of the UK Government's Foresight Project, The Future of Computer Trading in Financial Markets, he co-authored a commissioned economic impact assessment review. He has been involved in both the EU HPC in Finance and Big Data in Finance programmes. His wider research interests are data and decision analytics, and related performance aspects. Erik Vynckier is board member of Foresters Friendly Society, partner of InsurTech Venture Partners and Chief Investment Officer of Eli Global, following a career in banking, insurance, asset management and petrochemical industry. He co-founded EU initiatives on high performance computing and big data in finance. Erik graduated as MBA at London Business School and as chemical engineer at Universiteit Gent.
Part I: Computationally Expensive Problems in the Financial Industry 1.
Computationally Expensive Problems in Investment Banking 2. Using Market
Sentiment to Enhance Second-Order Stochastic Dominance Trading Models 3.
The Alpha Engine: Designing an Automated Trading Algorithm 4. Portfolio
Liquidation and Ambiguity Aversion 5. Challenges in Scenario Generation:
Modeling Market and Non-Market Risks in Insurance Part II: Numerical
Methods in Financial High-Performance Computing (HPC) 6. Finite Difference
Methods for Medium- and High-Dimensional Derivative Pricing PDEs 7.
Multilevel Monte Carlo Methods for Applications in Finance 8. Fourier and
Wavelet Option Pricing Methods 9. A Practical Robust Long-Term Yield Curve
Model 10. Algorithmic Differentiation 11. Case Studies of Real-Time Risk
Management via Adjoint Algorithmic Differentiation (AAD) 12. Tackling
Reinsurance Contract Optimization by Means of Evolutionary Algorithms and
HPC 13. Evaluating Blockchain Implementation of Clearing and Settlement at
the IATA Clearing House Part III: HPC Systems: Hardware, Software, and Data
with Financial Applications 14. Supercomputers 15. Multiscale Dataflow
Computing in Finance 16. Manycore Parallel Computation 17. Practitioner's
Guide on the Use of Cloud Computing in Finance 18. Blockchains and
Distributed Ledgers in Retrospective and Perspective 19. Optimal Feature
Selection Using a Quantum Annealer
Computationally Expensive Problems in Investment Banking 2. Using Market
Sentiment to Enhance Second-Order Stochastic Dominance Trading Models 3.
The Alpha Engine: Designing an Automated Trading Algorithm 4. Portfolio
Liquidation and Ambiguity Aversion 5. Challenges in Scenario Generation:
Modeling Market and Non-Market Risks in Insurance Part II: Numerical
Methods in Financial High-Performance Computing (HPC) 6. Finite Difference
Methods for Medium- and High-Dimensional Derivative Pricing PDEs 7.
Multilevel Monte Carlo Methods for Applications in Finance 8. Fourier and
Wavelet Option Pricing Methods 9. A Practical Robust Long-Term Yield Curve
Model 10. Algorithmic Differentiation 11. Case Studies of Real-Time Risk
Management via Adjoint Algorithmic Differentiation (AAD) 12. Tackling
Reinsurance Contract Optimization by Means of Evolutionary Algorithms and
HPC 13. Evaluating Blockchain Implementation of Clearing and Settlement at
the IATA Clearing House Part III: HPC Systems: Hardware, Software, and Data
with Financial Applications 14. Supercomputers 15. Multiscale Dataflow
Computing in Finance 16. Manycore Parallel Computation 17. Practitioner's
Guide on the Use of Cloud Computing in Finance 18. Blockchains and
Distributed Ledgers in Retrospective and Perspective 19. Optimal Feature
Selection Using a Quantum Annealer
Part I: Computationally Expensive Problems in the Financial Industry 1.
Computationally Expensive Problems in Investment Banking 2. Using Market
Sentiment to Enhance Second-Order Stochastic Dominance Trading Models 3.
The Alpha Engine: Designing an Automated Trading Algorithm 4. Portfolio
Liquidation and Ambiguity Aversion 5. Challenges in Scenario Generation:
Modeling Market and Non-Market Risks in Insurance Part II: Numerical
Methods in Financial High-Performance Computing (HPC) 6. Finite Difference
Methods for Medium- and High-Dimensional Derivative Pricing PDEs 7.
Multilevel Monte Carlo Methods for Applications in Finance 8. Fourier and
Wavelet Option Pricing Methods 9. A Practical Robust Long-Term Yield Curve
Model 10. Algorithmic Differentiation 11. Case Studies of Real-Time Risk
Management via Adjoint Algorithmic Differentiation (AAD) 12. Tackling
Reinsurance Contract Optimization by Means of Evolutionary Algorithms and
HPC 13. Evaluating Blockchain Implementation of Clearing and Settlement at
the IATA Clearing House Part III: HPC Systems: Hardware, Software, and Data
with Financial Applications 14. Supercomputers 15. Multiscale Dataflow
Computing in Finance 16. Manycore Parallel Computation 17. Practitioner's
Guide on the Use of Cloud Computing in Finance 18. Blockchains and
Distributed Ledgers in Retrospective and Perspective 19. Optimal Feature
Selection Using a Quantum Annealer
Computationally Expensive Problems in Investment Banking 2. Using Market
Sentiment to Enhance Second-Order Stochastic Dominance Trading Models 3.
The Alpha Engine: Designing an Automated Trading Algorithm 4. Portfolio
Liquidation and Ambiguity Aversion 5. Challenges in Scenario Generation:
Modeling Market and Non-Market Risks in Insurance Part II: Numerical
Methods in Financial High-Performance Computing (HPC) 6. Finite Difference
Methods for Medium- and High-Dimensional Derivative Pricing PDEs 7.
Multilevel Monte Carlo Methods for Applications in Finance 8. Fourier and
Wavelet Option Pricing Methods 9. A Practical Robust Long-Term Yield Curve
Model 10. Algorithmic Differentiation 11. Case Studies of Real-Time Risk
Management via Adjoint Algorithmic Differentiation (AAD) 12. Tackling
Reinsurance Contract Optimization by Means of Evolutionary Algorithms and
HPC 13. Evaluating Blockchain Implementation of Clearing and Settlement at
the IATA Clearing House Part III: HPC Systems: Hardware, Software, and Data
with Financial Applications 14. Supercomputers 15. Multiscale Dataflow
Computing in Finance 16. Manycore Parallel Computation 17. Practitioner's
Guide on the Use of Cloud Computing in Finance 18. Blockchains and
Distributed Ledgers in Retrospective and Perspective 19. Optimal Feature
Selection Using a Quantum Annealer