- Demonstrates how to redesign widely used image registration algorithms so as to best expose the underlying parallelism available in these algorithms
- Shows how to pose and implement the parallel versions of the algorithms within the single instruction, multiple data (SIMD) model supported by GPUs
- Provides Programming "tricks" that can help readers develop other image processing algorithms, including registration algorithms for the GPU
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"Shackleford, Kandasamy and Sharp develop highly data-parallel deformable image registration algorithms suitable for use on modern multicore processors. Their grid alignment technique and associated data structures reduce the complexity of B-spline registration and can be extended to perform multimodal image registration by utilizing the mutual information similarity metric." --Reference and Research Book News, October 2013