136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
68 °P sammeln
136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
68 °P sammeln
Als Download kaufen
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
68 °P sammeln
Jetzt verschenken
136,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
68 °P sammeln
  • Format: PDF

Enables readers to gain an overview of recent advances in the use of organic molecules as structure-directing agents for the synthesis of zeolites
Multi-authored volume with contributions from experts in the field
Provides introduction to the main concepts of host-guest chemistry in structure-directed synthesis

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 13.99MB
Produktbeschreibung
Enables readers to gain an overview of recent advances in the use of organic molecules as structure-directing agents for the synthesis of zeolites

Multi-authored volume with contributions from experts in the field

Provides introduction to the main concepts of host-guest chemistry in structure-directed synthesis


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Luis Gómez-Hortigüela is a researcher at the Instituto de Catálisis y Petroleoquímica-CSIC. His research focuses on the development of advanced zeolitic nanoporous materials with improved catalytic properties through the use of rationally-designed organic molecules as structure-directing agents. This research combines the use of molecular-mechanics and quantum mechanics simulation techniques with the actual synthesis and advanced characterization of zeolitic materials in an attempt to reach a molecular-level knowledge of the phenomena taking place during the structure-direction of these materials. Specific research focuses on the use of self-assembling aromatic amines/ammonium compounds as organic structure-directing agents in order to produce large-pore nanoporous materials by applying concepts of supramolecular chemistry. Moreover, the use of self-assembling chiral compounds as structure-directing agents in an attempt to induce a chiral supramolecular ordering thatcould be transferred into a potential chiral zeolite framework, thus leading to enantioselective adsorbents and/or catalysts. In addition, Dr Gómez-Hortigüela's research also looks at attempting to control the location of active sites in zeolite frameworks by the rational use of specific structure-directing agents. Research is also carried out to take advantage of the peculiar ion-exchanging properties of zeolite materials for controlling the growth of inorganic nanoparticles on zeolite surfaces for water-treatment applications.