Interval-Censored Time-to-Event Data (eBook, PDF)
Methods and Applications
Redaktion: Chen, Ding-Geng (Din); Peace, Karl E.; Sun, Jianguo
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Interval-Censored Time-to-Event Data (eBook, PDF)
Methods and Applications
Redaktion: Chen, Ding-Geng (Din); Peace, Karl E.; Sun, Jianguo
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research.Divid
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 3.14MB
Andere Kunden interessierten sich auch für
- Mark D. RothmannDesign and Analysis of Non-Inferiority Trials (eBook, PDF)48,95 €
- Design and Analysis of Bridging Studies (eBook, PDF)48,95 €
- Design and Analysis of Clinical Trials with Time-to-Event Endpoints (eBook, PDF)62,95 €
- Dimitris RizopoulosJoint Models for Longitudinal and Time-to-Event Data (eBook, PDF)46,95 €
- Lyle D. BroemelingBayesian Methods in Epidemiology (eBook, PDF)48,95 €
- Joseph C. CappelleriPatient-Reported Outcomes (eBook, PDF)52,95 €
- D. A. BerryStatistical Methodology in the Pharmaceutical Sciences (eBook, PDF)64,95 €
-
-
-
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research.Divid
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 434
- Erscheinungstermin: 19. Juli 2012
- Englisch
- ISBN-13: 9781466504288
- Artikelnr.: 38319960
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 434
- Erscheinungstermin: 19. Juli 2012
- Englisch
- ISBN-13: 9781466504288
- Artikelnr.: 38319960
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Ding-Geng (Din) Chen, Ph.D., is a professor at the University of Rochester Medical Center. Dr. Chen is also a senior biostatistics consultant for biopharmaceutical companies and government agencies. He is a member of the ASA, chair-elect for the STAT section of the American Public Health Association, and an associate editor of the Journal of Statistical Computation and Simulation. He has authored/co-authored more than 80 journal publications on biostatistical methodologies and applications and co-authored two books with Dr. Peace, Clinical Trial Methodology and Clinical Trial Data Analysis Using R. Jianguo (Tony) Sun, Ph.D., is a professor of statistics at the University of Missouri. He has worked on failure time analysis for over 20 years and published many papers on failure time analysis, chemometrics, longitudinal data analysis, and panel count data analysis. He also authored the book, Statistical Analysis of Interval-censored Failure Time Data. Karl E. Peace, Ph.D., is the Georgia Cancer Coalition Distinguished Cancer Scholar, senior research scientist, and professor of biostatistics in the Jiann-Ping Hsu College of Public Health at Georgia Southern University, where he is the founding director of the Center for Biostatistics. A fellow of the ASA, he has received numerous honors, including citations from the Georgia and U.S. Congressional Houses for contributions to education and public health, the Hall of Fame Alumni Award from Georgia Southern University System's Board of Regents, and the ASA Award for Statistical Contributions for the Betterment of Society. Dr. Peace has authored/edited ten books and authored/co-authored over 200 articles. His primary research interests include drug research and development, clinical trial methodology, time-to-event methodology, and public health applications of biostatistics.
Introduction and Overview: Overview of Recent Developments for Interval
Censored Data. A Review of Various Models for Interval
Censored Data. Methodology: Current Status Data in the Twenty
First Century. Regression Analysis for Current Status Data. Statistical Analysis of Dependent Current Status Data. Bayesian Semiparametric Regression Analysis of Interval
Censored Data with Monotone Splines. Bayesian Inference of Interval
Censored Survival Data. Targeted Minimum Loss
Based Estimation of a Causal Effect Using Interval
Censored Time
to
Event Data. Consistent Variance Estimation in Interval
Censored Data. Applications and Related Software: Bias Assessment in Progression
Free Survival Analysis. Bias and Its Remedy in Interval
Censored Time
to
Event Applications. Adaptive Decision Making Based on Interval
Censored Data in a Clinical Trial to Optimize Rapid Treatment of Stroke. Practical Issues on Using Weighted Logrank Tests. glrt
New R Package for Analyzing Interval
Censored Survival Data. Index.
Censored Data. A Review of Various Models for Interval
Censored Data. Methodology: Current Status Data in the Twenty
First Century. Regression Analysis for Current Status Data. Statistical Analysis of Dependent Current Status Data. Bayesian Semiparametric Regression Analysis of Interval
Censored Data with Monotone Splines. Bayesian Inference of Interval
Censored Survival Data. Targeted Minimum Loss
Based Estimation of a Causal Effect Using Interval
Censored Time
to
Event Data. Consistent Variance Estimation in Interval
Censored Data. Applications and Related Software: Bias Assessment in Progression
Free Survival Analysis. Bias and Its Remedy in Interval
Censored Time
to
Event Applications. Adaptive Decision Making Based on Interval
Censored Data in a Clinical Trial to Optimize Rapid Treatment of Stroke. Practical Issues on Using Weighted Logrank Tests. glrt
New R Package for Analyzing Interval
Censored Survival Data. Index.
Introduction and Overview: Overview of Recent Developments for Interval
Censored Data. A Review of Various Models for Interval
Censored Data. Methodology: Current Status Data in the Twenty
First Century. Regression Analysis for Current Status Data. Statistical Analysis of Dependent Current Status Data. Bayesian Semiparametric Regression Analysis of Interval
Censored Data with Monotone Splines. Bayesian Inference of Interval
Censored Survival Data. Targeted Minimum Loss
Based Estimation of a Causal Effect Using Interval
Censored Time
to
Event Data. Consistent Variance Estimation in Interval
Censored Data. Applications and Related Software: Bias Assessment in Progression
Free Survival Analysis. Bias and Its Remedy in Interval
Censored Time
to
Event Applications. Adaptive Decision Making Based on Interval
Censored Data in a Clinical Trial to Optimize Rapid Treatment of Stroke. Practical Issues on Using Weighted Logrank Tests. glrt
New R Package for Analyzing Interval
Censored Survival Data. Index.
Censored Data. A Review of Various Models for Interval
Censored Data. Methodology: Current Status Data in the Twenty
First Century. Regression Analysis for Current Status Data. Statistical Analysis of Dependent Current Status Data. Bayesian Semiparametric Regression Analysis of Interval
Censored Data with Monotone Splines. Bayesian Inference of Interval
Censored Survival Data. Targeted Minimum Loss
Based Estimation of a Causal Effect Using Interval
Censored Time
to
Event Data. Consistent Variance Estimation in Interval
Censored Data. Applications and Related Software: Bias Assessment in Progression
Free Survival Analysis. Bias and Its Remedy in Interval
Censored Time
to
Event Applications. Adaptive Decision Making Based on Interval
Censored Data in a Clinical Trial to Optimize Rapid Treatment of Stroke. Practical Issues on Using Weighted Logrank Tests. glrt
New R Package for Analyzing Interval
Censored Survival Data. Index.