Jose M. Garrido
Introduction to Computational Models with Python (eBook, PDF)
45,95 €
45,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
45,95 €
Als Download kaufen
45,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
45,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Jose M. Garrido
Introduction to Computational Models with Python (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy m
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.59MB
Andere Kunden interessierten sich auch für
- S. SumathiMachine Learning for Decision Sciences with Case Studies in Python (eBook, PDF)66,95 €
- Yahya Esmail OsaisComputer Simulation (eBook, PDF)48,95 €
- Jose M. GarridoIntroduction to Computational Modeling Using C and Open-Source Tools (eBook, PDF)63,95 €
- Gowrishankar SIntroduction to Python Programming (eBook, PDF)170,95 €
- Matthew J. SottileIntroduction to Concurrency in Programming Languages (eBook, PDF)63,95 €
- Alasdair McAndrewA Computational Introduction to Digital Image Processing (eBook, PDF)51,95 €
- Parveen BerwalComputer Applications in Engineering and Management (eBook, PDF)55,95 €
-
-
-
Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy m
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 496
- Erscheinungstermin: 28. August 2015
- Englisch
- ISBN-13: 9781498712040
- Artikelnr.: 44195085
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 496
- Erscheinungstermin: 28. August 2015
- Englisch
- ISBN-13: 9781498712040
- Artikelnr.: 44195085
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jose M. Garrido is a professor in the Department of Computer Science at Kennesaw State University. Dr. Garrido is the author of several books and numerous research papers. His research interests include software development, operating systems, computational modeling, object-oriented simulation, and system formal specification.
Problem Solving: Problem Solving and Computing. Simple Python Programs.
Basic Programming Principles with Python: Modules and Functions. Program
Structures. The Selection Program Structure. The Repetition Program
Structure. Data Structures, Object Orientation, and Recursion: Python
Lists, Strings, and Other Data Sequences. Object Orientation.
Object-Oriented Programs. Linked Lists. Recursion. Fundamental
Computational Models with Python: Computational Models with Arithmetic
Growth. Computational Models with Quadratic Growth. Models with Geometric
Growth. Computational Models with Polynomial Growth. Empirical Models with
Interpolation and Curve Fitting. Using Arrays with Numpy. Models with
Matrices and Linear Equations. Introduction to Models of Dynamical Systems.
Linear Optimization Models: Linear Optimization Modeling. Solving Linear
Optimization Models. Sensitivity Analysis and Duality. Transportation
Models. Network Models. Integer Linear Optimization Models.
Basic Programming Principles with Python: Modules and Functions. Program
Structures. The Selection Program Structure. The Repetition Program
Structure. Data Structures, Object Orientation, and Recursion: Python
Lists, Strings, and Other Data Sequences. Object Orientation.
Object-Oriented Programs. Linked Lists. Recursion. Fundamental
Computational Models with Python: Computational Models with Arithmetic
Growth. Computational Models with Quadratic Growth. Models with Geometric
Growth. Computational Models with Polynomial Growth. Empirical Models with
Interpolation and Curve Fitting. Using Arrays with Numpy. Models with
Matrices and Linear Equations. Introduction to Models of Dynamical Systems.
Linear Optimization Models: Linear Optimization Modeling. Solving Linear
Optimization Models. Sensitivity Analysis and Duality. Transportation
Models. Network Models. Integer Linear Optimization Models.
Problem Solving: Problem Solving and Computing. Simple Python Programs. Basic Programming Principles with Python: Modules and Functions. Program Structures. The Selection Program Structure. The Repetition Program Structure. Data Structures, Object Orientation, and Recursion: Python Lists, Strings, and Other Data Sequences. Object Orientation. Object-Oriented Programs. Linked Lists. Recursion. Fundamental Computational Models with Python: Computational Models with Arithmetic Growth. Computational Models with Quadratic Growth. Models with Geometric Growth. Computational Models with Polynomial Growth. Empirical Models with Interpolation and Curve Fitting. Using Arrays with Numpy. Models with Matrices and Linear Equations. Introduction to Models of Dynamical Systems. Linear Optimization Models: Linear Optimization Modeling. Solving Linear Optimization Models. Sensitivity Analysis and Duality. Transportation Models. Network Models. Integer Linear Optimization Models.
Problem Solving: Problem Solving and Computing. Simple Python Programs.
Basic Programming Principles with Python: Modules and Functions. Program
Structures. The Selection Program Structure. The Repetition Program
Structure. Data Structures, Object Orientation, and Recursion: Python
Lists, Strings, and Other Data Sequences. Object Orientation.
Object-Oriented Programs. Linked Lists. Recursion. Fundamental
Computational Models with Python: Computational Models with Arithmetic
Growth. Computational Models with Quadratic Growth. Models with Geometric
Growth. Computational Models with Polynomial Growth. Empirical Models with
Interpolation and Curve Fitting. Using Arrays with Numpy. Models with
Matrices and Linear Equations. Introduction to Models of Dynamical Systems.
Linear Optimization Models: Linear Optimization Modeling. Solving Linear
Optimization Models. Sensitivity Analysis and Duality. Transportation
Models. Network Models. Integer Linear Optimization Models.
Basic Programming Principles with Python: Modules and Functions. Program
Structures. The Selection Program Structure. The Repetition Program
Structure. Data Structures, Object Orientation, and Recursion: Python
Lists, Strings, and Other Data Sequences. Object Orientation.
Object-Oriented Programs. Linked Lists. Recursion. Fundamental
Computational Models with Python: Computational Models with Arithmetic
Growth. Computational Models with Quadratic Growth. Models with Geometric
Growth. Computational Models with Polynomial Growth. Empirical Models with
Interpolation and Curve Fitting. Using Arrays with Numpy. Models with
Matrices and Linear Equations. Introduction to Models of Dynamical Systems.
Linear Optimization Models: Linear Optimization Modeling. Solving Linear
Optimization Models. Sensitivity Analysis and Duality. Transportation
Models. Network Models. Integer Linear Optimization Models.
Problem Solving: Problem Solving and Computing. Simple Python Programs. Basic Programming Principles with Python: Modules and Functions. Program Structures. The Selection Program Structure. The Repetition Program Structure. Data Structures, Object Orientation, and Recursion: Python Lists, Strings, and Other Data Sequences. Object Orientation. Object-Oriented Programs. Linked Lists. Recursion. Fundamental Computational Models with Python: Computational Models with Arithmetic Growth. Computational Models with Quadratic Growth. Models with Geometric Growth. Computational Models with Polynomial Growth. Empirical Models with Interpolation and Curve Fitting. Using Arrays with Numpy. Models with Matrices and Linear Equations. Introduction to Models of Dynamical Systems. Linear Optimization Models: Linear Optimization Modeling. Solving Linear Optimization Models. Sensitivity Analysis and Duality. Transportation Models. Network Models. Integer Linear Optimization Models.