Large Scale and Big Data (eBook, ePUB)
Processing and Management
Redaktion: Sakr, Sherif; Gaber, Mohamed
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
53,95 €
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
Large Scale and Big Data (eBook, ePUB)
Processing and Management
Redaktion: Sakr, Sherif; Gaber, Mohamed
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing t
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
Developing Essbase Applications (eBook, ePUB)46,95 €
Stephan KudybaBig Data, Mining, and Analytics (eBook, ePUB)57,95 €
Rex HoganA Practical Guide to Database Design (eBook, ePUB)46,95 €
High-Performance Web Databases (eBook, ePUB)55,95 €
Bhavani ThuraisinghamDesign and Implementation of Data Mining Tools (eBook, ePUB)57,95 €
Big Data Applications in Industry 4.0 (eBook, ePUB)43,95 €
Vinod Kumar ChauhanStochastic Optimization for Large-scale Machine Learning (eBook, ePUB)51,95 €-
-
-
Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing t
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 636
- Erscheinungstermin: 25. Juni 2014
- Englisch
- ISBN-13: 9781040059371
- Artikelnr.: 72278607
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 636
- Erscheinungstermin: 25. Juni 2014
- Englisch
- ISBN-13: 9781040059371
- Artikelnr.: 72278607
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Sherif Sakr is a Senior Researcher at National ICT Australia (NICTA), Sydney, Australia. He is also a Conjoint Senior Lecturer at the University of New South Wales (UNSW). He received his PhD degree in Computer and Information Science from Konstanz University, Germany in 2007. He received his BSc and MSc degrees in Computer Science from Cairo University, Egypt, in 2000 and 2003 respectively. In 2011, Sherif held a Visiting Researcher position at the eXtreme Computing Group, Microsoft Research, USA. In 2012, he held a Research MTS position in Alcatel-Lucent Bell Labs. Dr. Sakr has published more than 60 refereed research publications in international journals and conferences such as the IEEE TSC, ACM CSUR, JCSS, IEEE COMST, VLDB, SIGMOD, ICDE, WWW, and CIKM. He has served in the organizing and program committees of numerous conferences and workshops. Dr. Mohamed Medhat Gaber is a reader in the School of Computing Science and Digital Media of Robert Gordon University, UK. Mohamed received his PhD from Monash University, Australia, in 2006. He then held appointments with the University of Sydney, CSIRO, Monash University, and the University of Portsmouth. Dr. Gaber has published over 100 papers, coauthored one monograph-style book, and edited/coedited four books on data mining, and knowledge discovery. He has served in the program committees of major conferences related to data mining, including ICDM, PAKDD, ECML/PKDD, and ICML. He has also been a member of the organizing committees of numerous conferences and workshops.
Distributed Programming for the Cloud. MapReduce Family of Large-Scale
Data-Processing Systems. Extending MapReduce for Iterative Processing.
Incremental MapReduce Computations. Large-Scale RDF Processing with
MapReduce. Algebraic Optimization of RDF Graph Pattern Queries on
MapReduce. Network Performance Aware Graph Partitioning for Large Graph
Processing Systems in the Cloud. PEGASUS. An Overview of the NoSQL World.
Consistency Management in Cloud Storage Systems. CloudDB AutoAdmin.
Overview of Large-Scale Stream Processing Engines. Advanced Algorithms for
Efficient Approximate Duplicate Detection in Data Streams Using Bloom
Filters. Large-Scale Network Traffic Analysis for Estimating the Size of IP
Addresses and Detecting Traffic Anomalies. Recommending Environmental Big
Data Using Semantically Guided Machine Learning. Virtualizing Resources for
the Cloud. Toward Optimal Resource Provisioning for Economical and Green
MapReduce. Computing in the Cloud. Performance Analysis for Large IaaS
Clouds. Security in Big Data and Cloud Computing.
Data-Processing Systems. Extending MapReduce for Iterative Processing.
Incremental MapReduce Computations. Large-Scale RDF Processing with
MapReduce. Algebraic Optimization of RDF Graph Pattern Queries on
MapReduce. Network Performance Aware Graph Partitioning for Large Graph
Processing Systems in the Cloud. PEGASUS. An Overview of the NoSQL World.
Consistency Management in Cloud Storage Systems. CloudDB AutoAdmin.
Overview of Large-Scale Stream Processing Engines. Advanced Algorithms for
Efficient Approximate Duplicate Detection in Data Streams Using Bloom
Filters. Large-Scale Network Traffic Analysis for Estimating the Size of IP
Addresses and Detecting Traffic Anomalies. Recommending Environmental Big
Data Using Semantically Guided Machine Learning. Virtualizing Resources for
the Cloud. Toward Optimal Resource Provisioning for Economical and Green
MapReduce. Computing in the Cloud. Performance Analysis for Large IaaS
Clouds. Security in Big Data and Cloud Computing.
Distributed Programming for the Cloud. MapReduce Family of Large-Scale
Data-Processing Systems. Extending MapReduce for Iterative Processing.
Incremental MapReduce Computations. Large-Scale RDF Processing with
MapReduce. Algebraic Optimization of RDF Graph Pattern Queries on
MapReduce. Network Performance Aware Graph Partitioning for Large Graph
Processing Systems in the Cloud. PEGASUS. An Overview of the NoSQL World.
Consistency Management in Cloud Storage Systems. CloudDB AutoAdmin.
Overview of Large-Scale Stream Processing Engines. Advanced Algorithms for
Efficient Approximate Duplicate Detection in Data Streams Using Bloom
Filters. Large-Scale Network Traffic Analysis for Estimating the Size of IP
Addresses and Detecting Traffic Anomalies. Recommending Environmental Big
Data Using Semantically Guided Machine Learning. Virtualizing Resources for
the Cloud. Toward Optimal Resource Provisioning for Economical and Green
MapReduce. Computing in the Cloud. Performance Analysis for Large IaaS
Clouds. Security in Big Data and Cloud Computing.
Data-Processing Systems. Extending MapReduce for Iterative Processing.
Incremental MapReduce Computations. Large-Scale RDF Processing with
MapReduce. Algebraic Optimization of RDF Graph Pattern Queries on
MapReduce. Network Performance Aware Graph Partitioning for Large Graph
Processing Systems in the Cloud. PEGASUS. An Overview of the NoSQL World.
Consistency Management in Cloud Storage Systems. CloudDB AutoAdmin.
Overview of Large-Scale Stream Processing Engines. Advanced Algorithms for
Efficient Approximate Duplicate Detection in Data Streams Using Bloom
Filters. Large-Scale Network Traffic Analysis for Estimating the Size of IP
Addresses and Detecting Traffic Anomalies. Recommending Environmental Big
Data Using Semantically Guided Machine Learning. Virtualizing Resources for
the Cloud. Toward Optimal Resource Provisioning for Economical and Green
MapReduce. Computing in the Cloud. Performance Analysis for Large IaaS
Clouds. Security in Big Data and Cloud Computing.







