55,95 €
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
28 °P sammeln
55,95 €
55,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
28 °P sammeln
Als Download kaufen
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
28 °P sammeln
Jetzt verschenken
55,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
28 °P sammeln
  • Format: PDF

Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 3.13MB
  • FamilySharing(5)
Produktbeschreibung
Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ernest K. Ryu is Assistant Professor of Mathematical Sciences at Seoul National University. He previously served as Assistant Adjunct Professor with the Department of Mathematics at the University of California, Los Angeles from 2016 to 2019, before joining Seoul National University in 2020. He received a BS with distinction in physics and electrical engineering from the California Institute of Technology in 2010; and then an MS in statistics and a PhD - with the Gene Golub Best Thesis Award - in computational mathematics at Stanford University in 2016. His current research focuses on mathematical optimization and machine learning.