Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Limit Analysis and Concrete Plasticity, Second Edition explains the basic principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design codes. This understanding enables the design student or engineer to solve problems more effectively and safely. Fully updated, the second edition includes new treatments in a variety of areas and includes numerical methods and computer code for solving problems, incorporating methods into Eurocode 2-the common concrete standard for all of Europe.…mehr
Limit Analysis and Concrete Plasticity, Second Edition explains the basic principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design codes. This understanding enables the design student or engineer to solve problems more effectively and safely. Fully updated, the second edition includes new treatments in a variety of areas and includes numerical methods and computer code for solving problems, incorporating methods into Eurocode 2-the common concrete standard for all of Europe.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
M.P. Nielsen Technical University of Denmark, Bygning, L.C. Hoang
Inhaltsangabe
Introduction, The Theory of Plasticity, Constitutive Equations, Extremum Principles for Rigid-Plastic Materials, The Solution of Plasticity Problems, Reinforced Concrete Structures, Yield Conditions, Concrete, Yield Conditions for Reinforced Disks, Yield Conditions for Slabs, Reinforcement Design, The Theory of Plain Concrete, Statical Conditions, Geometrical Conditions, Virtual Work, Statical Conditions, Geometrical Conditions, Virtual Work, Constitutive Equations, Exact Solutions for Isotropic Disks, The Effective Compressive Strength of Reinforced Disks, General Theory of Lower Bound Solutions, Strut and Tie Models, Shear Walls, Homogenous Reinforcement Solutions, Design According to the Elastic Theory, Beams, Beams in Bending, Beams in Shear, Beams in Torsion, Combined Bending, Shear, and Torsion, Slabs, Statical Conditions, Geometrical Conditions, Virtual Work, Boundary Conditions, Constitutive Equations, Exact Solutions for Isotropic Slabs, Upper Bound Solutions for Isotropic Slabs, Lower Bound Solutions, Orthotropic Slabs, Analytical Optimum Reinforcement Solutions, Numerical Methods, Membrane Action, Punching Shear of Slabs, Introduction, Internal Loads or Columns, Edge and Corner Loads, Concluding Remarks, Shear in Joints, Introduction, Analysis of Joints by Plastic Theory, Strength of Different Types of Joints, The Bond Strength of Reinforcing Bars, Introduction, The Local Failure Mechanism, Failure Mechanisms, Analysis of Failure Mechanisms, Assessment of Anchor and Splice Strength, Effect of Transverse Pressure and Support Reaction, Effect of Transverse Reinforcement, Concluding Remarks
Introduction, The Theory of Plasticity, Constitutive Equations, Extremum Principles for Rigid-Plastic Materials, The Solution of Plasticity Problems, Reinforced Concrete Structures, Yield Conditions, Concrete, Yield Conditions for Reinforced Disks, Yield Conditions for Slabs, Reinforcement Design, The Theory of Plain Concrete, Statical Conditions, Geometrical Conditions, Virtual Work, Statical Conditions, Geometrical Conditions, Virtual Work, Constitutive Equations, Exact Solutions for Isotropic Disks, The Effective Compressive Strength of Reinforced Disks, General Theory of Lower Bound Solutions, Strut and Tie Models, Shear Walls, Homogenous Reinforcement Solutions, Design According to the Elastic Theory, Beams, Beams in Bending, Beams in Shear, Beams in Torsion, Combined Bending, Shear, and Torsion, Slabs, Statical Conditions, Geometrical Conditions, Virtual Work, Boundary Conditions, Constitutive Equations, Exact Solutions for Isotropic Slabs, Upper Bound Solutions for Isotropic Slabs, Lower Bound Solutions, Orthotropic Slabs, Analytical Optimum Reinforcement Solutions, Numerical Methods, Membrane Action, Punching Shear of Slabs, Introduction, Internal Loads or Columns, Edge and Corner Loads, Concluding Remarks, Shear in Joints, Introduction, Analysis of Joints by Plastic Theory, Strength of Different Types of Joints, The Bond Strength of Reinforcing Bars, Introduction, The Local Failure Mechanism, Failure Mechanisms, Analysis of Failure Mechanisms, Assessment of Anchor and Splice Strength, Effect of Transverse Pressure and Support Reaction, Effect of Transverse Reinforcement, Concluding Remarks
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826