Vladimir Rabinovich, Steffen Roch, Bernd Silbermann
Limit Operators and Their Applications in Operator Theory (eBook, PDF)
112,95 €
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
56 °P sammeln
112,95 €
Als Download kaufen
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
56 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
56 °P sammeln
Vladimir Rabinovich, Steffen Roch, Bernd Silbermann
Limit Operators and Their Applications in Operator Theory (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book is devoted to a class of operators which occurs in almost every part of mathematics: band and band-dominated operators on spaces of vector-valued sequences. The main emphasis is on Fredholm theory for these operators, and the main tool to study this topic is the method of limit operators. Applications are presented to several important classes of such operators: convolution type operators, pseudodifferential and pseudodifference operators.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 55MB
Andere Kunden interessierten sich auch für
Topics in Operator Theory (eBook, PDF)112,95 €
Recent Advances in Operator Theory, Operator Algebras, and their Applications (eBook, PDF)72,95 €
Modern Operator Theory and Applications (eBook, PDF)72,95 €
Albrecht BöttcherCarleson Curves, Muckenhoupt Weights, and Toeplitz Operators (eBook, PDF)40,95 €
Recent Trends in Toeplitz and Pseudodifferential Operators (eBook, PDF)72,95 €
Convolution Equations and Singular Integral Operators (eBook, PDF)72,95 €
Harm BartFactorization of Matrix and Operator Functions: The State Space Method (eBook, PDF)112,95 €-
-
-
The book is devoted to a class of operators which occurs in almost every part of mathematics: band and band-dominated operators on spaces of vector-valued sequences. The main emphasis is on Fredholm theory for these operators, and the main tool to study this topic is the method of limit operators. Applications are presented to several important classes of such operators: convolution type operators, pseudodifferential and pseudodifference operators.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Basel
- Seitenzahl: 392
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034879118
- Artikelnr.: 53086272
- Verlag: Springer Basel
- Seitenzahl: 392
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034879118
- Artikelnr.: 53086272
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Vladimir Rabinovich, National Politechnic Institute of Mexico, Mexico
1 Limit Operators.- 1.1 Generalized compactness, generalized convergence.- 1.2 Limit operators.- 1.3 Algebraization.- 1.4 Comments and references.- 2 Fredholmness of Band-dominated Operators.- 2.1 Band-dominated operators.- 2.2 P-Fredholmness of rich band-dominated operators.- 2.3 Local P-Fredholmness: elementary theory.- 2.4 Local P-Fredholmness: advanced theory.- 2.5 Operators in the discrete Wiener algebra.- 2.6 Band-dominated operators with special coefficients.- 2.7 Indices of Fredholm band-dominated operators.- 2.8 Comments and references.- 3 Convolution Type Operators on $${mathbb{R}^N}$$.- 3.1 Band-dominated operators on $${L^p}left( {{mathbb{R}^N}} right)$$.- 3.2 Operators of convolution.- 3.3 Fredholmness of convolution type operators.- 3.4 Compressions of convolution type operators.- 3.5 A Wiener algebra of convolution-type operators.- 3.6 Comments and references.- 4 Pseudodifferential Operators.- 4.1 Generalities and notation.- 4.2 Bi-discretization of operators on $${L^2}left( {{mathbb{R}^N}} right)$$.- 4.3 Fredholmness of pseudodifferential operators.- 4.4 Applications.- 4.5 Mellin pseudodifferential operators.- 4.6 Singular integrals over Carleson curves with Muckenhoupt weights.- 4.7 Comments and references.- 5 Pseudodifference Operators.- 5.1 Pseudodifference operators.- 5.2 Fredholmness of pseudodifference operators.- 5.3 Fredholm properties of pseudodifference operators on weighted spaces.- 5.4 Slowly oscillating pseudodifference operators.- 5.5 Almost periodic pseudodifference operators.- 5.6 Periodic pseudodifference operators.- 5.7 Semi-periodic pseudodifference operators.- 5.8 Discrete Schrödinger operators.- 5.9 Comments and references.- 6 Finite Sections of Band-dominated Operators.- 6.1 Stability of the finite section method.- 6.2Finite sections of band-dominated operators on $${mathbb{Z}^1}$$ and $${mathbb{Z}^2}$$.- 6.3 Spectral approximation.- 6.4 Fractality of approximation methods.- 6.5 Comments and references.- 7 Axiomatization of the Limit Operators Approach.- 7.1 An axiomatic approach to the limit operators method.- 7.2 Operators on homogeneous groups.- 7.3 Fredholm criteria for convolution type operators with shift.- 7.4 Comments and references.
1 Limit Operators.- 1.1 Generalized compactness, generalized convergence.- 1.2 Limit operators.- 1.3 Algebraization.- 1.4 Comments and references.- 2 Fredholmness of Band-dominated Operators.- 2.1 Band-dominated operators.- 2.2 P-Fredholmness of rich band-dominated operators.- 2.3 Local P-Fredholmness: elementary theory.- 2.4 Local P-Fredholmness: advanced theory.- 2.5 Operators in the discrete Wiener algebra.- 2.6 Band-dominated operators with special coefficients.- 2.7 Indices of Fredholm band-dominated operators.- 2.8 Comments and references.- 3 Convolution Type Operators on $${mathbb{R}^N}$$.- 3.1 Band-dominated operators on $${L^p}left( {{mathbb{R}^N}} right)$$.- 3.2 Operators of convolution.- 3.3 Fredholmness of convolution type operators.- 3.4 Compressions of convolution type operators.- 3.5 A Wiener algebra of convolution-type operators.- 3.6 Comments and references.- 4 Pseudodifferential Operators.- 4.1 Generalities and notation.- 4.2 Bi-discretization of operators on $${L^2}left( {{mathbb{R}^N}} right)$$.- 4.3 Fredholmness of pseudodifferential operators.- 4.4 Applications.- 4.5 Mellin pseudodifferential operators.- 4.6 Singular integrals over Carleson curves with Muckenhoupt weights.- 4.7 Comments and references.- 5 Pseudodifference Operators.- 5.1 Pseudodifference operators.- 5.2 Fredholmness of pseudodifference operators.- 5.3 Fredholm properties of pseudodifference operators on weighted spaces.- 5.4 Slowly oscillating pseudodifference operators.- 5.5 Almost periodic pseudodifference operators.- 5.6 Periodic pseudodifference operators.- 5.7 Semi-periodic pseudodifference operators.- 5.8 Discrete Schrödinger operators.- 5.9 Comments and references.- 6 Finite Sections of Band-dominated Operators.- 6.1 Stability of the finite section method.- 6.2Finite sections of band-dominated operators on $${mathbb{Z}^1}$$ and $${mathbb{Z}^2}$$.- 6.3 Spectral approximation.- 6.4 Fractality of approximation methods.- 6.5 Comments and references.- 7 Axiomatization of the Limit Operators Approach.- 7.1 An axiomatic approach to the limit operators method.- 7.2 Operators on homogeneous groups.- 7.3 Fredholm criteria for convolution type operators with shift.- 7.4 Comments and references.







