58,95 €
58,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
58,95 €
Als Download kaufen
58,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
58,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is written to give instructors a tool to teach students to develop a mathematical concept from first principles. The text is organized around and offers the standard topics expected in a first undergraduate course in linear algebra.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Jeff SuzukiLinear Algebra (eBook, ePUB)58,95 €
- James R. KirkwoodLinear Algebra (eBook, PDF)59,95 €
- Crista ArangalaExploring Linear Algebra (eBook, ePUB)51,95 €
- Robert E. WhiteComputational Linear Algebra (eBook, PDF)47,95 €
- Hannah RobbinsFunctional Linear Algebra (eBook, PDF)59,95 €
- Thomas S. ShoresApplied Linear Algebra and Matrix Analysis (eBook, PDF)43,95 €
- Thomas S. ShoresApplied Linear Algebra and Matrix Analysis (eBook, PDF)40,95 €
-
-
-
This book is written to give instructors a tool to teach students to develop a mathematical concept from first principles. The text is organized around and offers the standard topics expected in a first undergraduate course in linear algebra.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 376
- Erscheinungstermin: 3. Mai 2021
- Englisch
- ISBN-13: 9781000377491
- Artikelnr.: 61307999
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 376
- Erscheinungstermin: 3. Mai 2021
- Englisch
- ISBN-13: 9781000377491
- Artikelnr.: 61307999
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jeff Suzuki is Associate Professor of Mathematics at Brooklyn College and holds a Ph.D. from Boston University. His research interests include mathematics education, history of mathematics, and the application of mathematics to society and technology. He is a two-time winner of the prestigious Carl B. Allendoerfer Award for expository writing. His publications have appeared in The College Mathematics Journals; Mathematics Magazine; Mathematics Teacher; and the American Mathematical Society's blog on teaching and learning mathematics. His YouTube channel (http://youtube.com/jeffsuzuki1) includes videos on mathematical subjects ranging from elementary arithmetic to linear algebra, cryptography, and differential equations.
Introduction and Features. For the Student . . . and Teacher.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Introduction and Features. For the Student . . . and Teacher. Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples. 1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6. Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations. 2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric Transformations. 3.2. Vector Transformations. 3.3. The Transformation Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6. Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography. 4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3. Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations. 4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3. Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10. Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3. Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues. 7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1. LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4. Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials. 9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates. Bibliography. Index.
Introduction and Features. For the Student . . . and Teacher.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Introduction and Features. For the Student . . . and Teacher. Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples. 1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6. Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations. 2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric Transformations. 3.2. Vector Transformations. 3.3. The Transformation Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6. Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography. 4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3. Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations. 4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3. Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10. Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3. Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues. 7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1. LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4. Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials. 9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates. Bibliography. Index.