Features:
- Provides coverage of matrix algebra that is extensive and relatively self-contained and does so in a meaningful context
- Provides thorough coverage of the relevant statistical distributions, including spherically and elliptically symmetric distributions
- Includes extensive coverage of multiple-comparison procedures (and of simultaneous confidence intervals), including procedures for controlling the k-FWER and the FDR
- Provides thorough coverage (complete with detailed and highly accessible proofs) of results on the properties of various linear-model procedures, including those of least squares estimators and those of the F test.
- Features the use of real data sets for illustrative purposes
- Includes many exercises
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
~Alex Trindade, Texas Tech University
"The book is very well written, with exceptional attention to details. It provides detailed derivations or proofs of almost all the results, and offers in-depth coverage of the topics discussed. Some of these materials (e.g., spherical/elliptical distributions) are hard to find from other sources. Anyone who is interested in linear models should benefit from reading this book and find it especially useful for a thorough understanding of the linear-model theory in a unified framework... The book is a delight to read."
~Huaiqing Wu, Iowa State University
"This book is useful in two ways: an excellent text book for a graduate level linear models course, and for those who want to learn linear mod