Paul Knottnerus
Linear Models with Correlated Disturbances (eBook, PDF)
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
72,95 €
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
36 °P sammeln
Paul Knottnerus
Linear Models with Correlated Disturbances (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is primarily concerned with the estimation of regression models with correlated disturbances. Topics discussed include maximum likelihood, test strategies, Kalman filtering, conditional normal distributions, the Cramér-Rao inequality, Cholesky decomposition, missing observations and numerical optimization. A simple geometrical approach is used.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.08MB
Andere Kunden interessierten sich auch für
P. J. DhrymesEconometrics (eBook, PDF)40,95 €
Data Analysis and Information Systems (eBook, PDF)72,95 €
T. MillsAnalysing Economic Data (eBook, PDF)72,95 €
Information Systems and Data Analysis (eBook, PDF)72,95 €
P. A. V. B. SwamyStatistical Inference in Random Coefficient Regression Models (eBook, PDF)40,95 €
T. HarderIntroduction to Mathematical Models in Market and Opinion Research (eBook, PDF)40,95 €
Gunnar BrennscheidtPredictive Behavior (eBook, PDF)40,95 €-
-
-
This book is primarily concerned with the estimation of regression models with correlated disturbances. Topics discussed include maximum likelihood, test strategies, Kalman filtering, conditional normal distributions, the Cramér-Rao inequality, Cholesky decomposition, missing observations and numerical optimization. A simple geometrical approach is used.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 196
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642483837
- Artikelnr.: 53099698
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 196
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642483837
- Artikelnr.: 53099698
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I Introduction.- II Transformation Matrices and Maximum Likelihood Estimation of Regression Models with Correlated Disturbances.- 2.1 Introduction.- 2.2 The algebraic problem.- 2.3 A dual problem.- 2.4 Recursive methods for calculating the transformation matrix P.- 2.5 The matrix P in the case of MA(1) disturbances.- 2.6 The matrix P in the case of MA(q) disturbances.- 2.7 The matrix P in the case of ARMA(p,q) disturbances.- Appendix 2. A Linear vector spaces.- Appendix 2.B The formula for ßtj if t is small.- III Computational Aspects of data Transformations and Ansley's Algorithm.- 3.1 Introduction.- 3.2 Recursive computations for models with MA(q) disturbances.- 3.3 Recursive computations for models with ARMA(p,q) disturbances.- 3.4 Ansley's method.- IV GLS Estimation by Kalman Filtering.- 4.1 Introduction.- 4.2 Some results from multivariate analysis.- 4.3 The Kaiman filter equations.- 4.4 The likelihood function.- 4.5 Estimation of linear models with ARMA(p,q) disturbances by means of Kaiman filtering.- 4.6 The exact likelihood function for models with ARMA(p,q) disturbances.- 4.7 Predictions and prediction intervals by using Kaiman filtering.- V Estimation of Regression Models with Missing Observations and Serially Correlated Disturbances.- 5.1 Introduction.- 5.2 The model.- 5.3 Derivation of the transformation matrix.- 5.4 Estimation and test procedures.- 5.5 Kaiman filtering with missing observations.- Appendix 5.A Stationarity conditions for an AR(2) process.- VI Distributed lag Models and Correlated Disturbances.- 6.1 Introduction.- 6.2 The geometric distributed lag model.- 6.3 Estimation methods.- 6.4 A simple formula for Koyck's consistent two-step estimator.- 6.5 Efficient estimation of dynamic models.- 6.6 Dynamic models with several geometricdistributed lags.- 6.7 The Cramér-Rao inequality and the Pythagorean theorem.- VII Test Strategies for Discriminating Between Autocorrelation and Misspecification.- 7.1 Introduction.- 7.2 Thursby's test strategy.- 7.3 Comments on Thursby's test strategy.- 7.4 Godfrey's test strategy.- 7.5 Comments on Godfrey's test strategy.- References.- Author Index.
I Introduction.- II Transformation Matrices and Maximum Likelihood Estimation of Regression Models with Correlated Disturbances.- 2.1 Introduction.- 2.2 The algebraic problem.- 2.3 A dual problem.- 2.4 Recursive methods for calculating the transformation matrix P.- 2.5 The matrix P in the case of MA(1) disturbances.- 2.6 The matrix P in the case of MA(q) disturbances.- 2.7 The matrix P in the case of ARMA(p,q) disturbances.- Appendix 2. A Linear vector spaces.- Appendix 2.B The formula for ßtj if t is small.- III Computational Aspects of data Transformations and Ansley's Algorithm.- 3.1 Introduction.- 3.2 Recursive computations for models with MA(q) disturbances.- 3.3 Recursive computations for models with ARMA(p,q) disturbances.- 3.4 Ansley's method.- IV GLS Estimation by Kalman Filtering.- 4.1 Introduction.- 4.2 Some results from multivariate analysis.- 4.3 The Kaiman filter equations.- 4.4 The likelihood function.- 4.5 Estimation of linear models with ARMA(p,q) disturbances by means of Kaiman filtering.- 4.6 The exact likelihood function for models with ARMA(p,q) disturbances.- 4.7 Predictions and prediction intervals by using Kaiman filtering.- V Estimation of Regression Models with Missing Observations and Serially Correlated Disturbances.- 5.1 Introduction.- 5.2 The model.- 5.3 Derivation of the transformation matrix.- 5.4 Estimation and test procedures.- 5.5 Kaiman filtering with missing observations.- Appendix 5.A Stationarity conditions for an AR(2) process.- VI Distributed lag Models and Correlated Disturbances.- 6.1 Introduction.- 6.2 The geometric distributed lag model.- 6.3 Estimation methods.- 6.4 A simple formula for Koyck's consistent two-step estimator.- 6.5 Efficient estimation of dynamic models.- 6.6 Dynamic models with several geometricdistributed lags.- 6.7 The Cramér-Rao inequality and the Pythagorean theorem.- VII Test Strategies for Discriminating Between Autocorrelation and Misspecification.- 7.1 Introduction.- 7.2 Thursby's test strategy.- 7.3 Comments on Thursby's test strategy.- 7.4 Godfrey's test strategy.- 7.5 Comments on Godfrey's test strategy.- References.- Author Index.







