Gordon E. Willmot, X. Sheldon Lin
Lundberg Approximations for Compound Distributions with Insurance Applications (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Gordon E. Willmot, X. Sheldon Lin
Lundberg Approximations for Compound Distributions with Insurance Applications (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book will be a useful reference for researchers and graduate students in the areas of applied probability and insurance risk.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 17.31MB
Andere Kunden interessierten sich auch für
Prem C. ConsulLagrangian Probability Distributions (eBook, PDF)40,95 €
Wim SchoutensStochastic Processes and Orthogonal Polynomials (eBook, PDF)72,95 €
Martin JacobsenPoint Process Theory and Applications (eBook, PDF)64,95 €
Lothar SachsApplied Statistics (eBook, PDF)40,95 €
Shelemyahu ZacksIntroduction to Reliability Analysis (eBook, PDF)72,95 €
Lothar SachsApplied Statistics (eBook, PDF)62,95 €
William S. PetersCounting for Something (eBook, PDF)40,95 €-
-
-
This book will be a useful reference for researchers and graduate students in the areas of applied probability and insurance risk.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 250
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461301110
- Artikelnr.: 44052837
- Verlag: Springer US
- Seitenzahl: 250
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461301110
- Artikelnr.: 44052837
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
PhD, FSA, FCIA Gordon E. Willmot is Munich Re Professor in the Department of Statistics and Actuarial Science at the University of Waterloo.
1 Introduction.- 2 Reliability background.- 2.1 The failure rate.- 2.2 Equilibrium distributions.- 2.3 The residual lifetime distribution and its mean.- 2.4 Other classes of distributions.- 2.5 Discrete reliability classes.- 2.6 Bounds on ratios of discrete tail probabilities.- 3 Mixed Poisson distributions.- 3.1 Tails of mixed Poisson distributions.- 3.2 The radius of convergence.- 3.3 Bounds on ratios of tail probabilities.- 3.4 Asymptotic tail behaviour of mixed Poisson distributions.- 4 Compound distributions.- 4.1 Introduction and examples.- 4.2 The general upper bound.- 4.3 The general lower bound.- 4.4 A Wald-type martingale approach.- 5 Bounds based on reliability classifications.- 5.1 First order properties.- 5.2 Bounds based on equilibrium properties.- 6 Parametric Bounds.- 6.1 Exponential bounds.- 6.2 Pareto bounds.- 6.3 Product based bounds.- 7 Compound geometric and related distributions.- 7.1 Compound modified geometric distributions.- 7.2 Discrete compound geometric distributions.- 7.3 Application to ruin probabilities.- 7.4 Compound negative binomial distributions.- 8 Tijms approximations.- 8.1 The asymptotic geometric case.- 8.2 The modified geometric distribution.- 8.3 Transform derivation of the approximation.- 9 Defective renewal equations.- 9.1 Some properties of defective renewal equations.- 9.2 The time of ruin and related quantities.- 9.3 Convolutions involving compound geometric distributions.- 10 The severity of ruin.- 10.1 The associated defective renewal equation.- 10.2 A mixture representation for the conditional distribution.- 10.3 Erlang mixtures with the same scale parameter.- 10.4 General Erlang mixtures.- 10.5 Further results.- 11 Renewal risk processes.- 11.1 General properties of the model.- 11.2 The Coxian-2 case.- 11.3 The sum of two exponentials.- 11.4 Delayed and equilibrium renewal risk processes.- Symbol Index.- Author Index.
1 Introduction.- 2 Reliability background.- 2.1 The failure rate.- 2.2 Equilibrium distributions.- 2.3 The residual lifetime distribution and its mean.- 2.4 Other classes of distributions.- 2.5 Discrete reliability classes.- 2.6 Bounds on ratios of discrete tail probabilities.- 3 Mixed Poisson distributions.- 3.1 Tails of mixed Poisson distributions.- 3.2 The radius of convergence.- 3.3 Bounds on ratios of tail probabilities.- 3.4 Asymptotic tail behaviour of mixed Poisson distributions.- 4 Compound distributions.- 4.1 Introduction and examples.- 4.2 The general upper bound.- 4.3 The general lower bound.- 4.4 A Wald-type martingale approach.- 5 Bounds based on reliability classifications.- 5.1 First order properties.- 5.2 Bounds based on equilibrium properties.- 6 Parametric Bounds.- 6.1 Exponential bounds.- 6.2 Pareto bounds.- 6.3 Product based bounds.- 7 Compound geometric and related distributions.- 7.1 Compound modified geometric distributions.- 7.2 Discrete compound geometric distributions.- 7.3 Application to ruin probabilities.- 7.4 Compound negative binomial distributions.- 8 Tijms approximations.- 8.1 The asymptotic geometric case.- 8.2 The modified geometric distribution.- 8.3 Transform derivation of the approximation.- 9 Defective renewal equations.- 9.1 Some properties of defective renewal equations.- 9.2 The time of ruin and related quantities.- 9.3 Convolutions involving compound geometric distributions.- 10 The severity of ruin.- 10.1 The associated defective renewal equation.- 10.2 A mixture representation for the conditional distribution.- 10.3 Erlang mixtures with the same scale parameter.- 10.4 General Erlang mixtures.- 10.5 Further results.- 11 Renewal risk processes.- 11.1 General properties of the model.- 11.2 The Coxian-2 case.- 11.3 The sum of two exponentials.- 11.4 Delayed and equilibrium renewal risk processes.- Symbol Index.- Author Index.







