- Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task
- Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts
- Includes a wealth of review questions and quizzes
- Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics
- Accessible to self-learners with a basic knowledge of linear algebra and calculus
- Slides and assessment questions (available only to instructors)
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.