Machen Sie sich mit den beiden zentralen Bausteinen vertraut: Predictive Analysis Library (PAL) und Automated Predictive Library (APL). Während die PAL ermöglicht, einzelne Prozeduren flexibel miteinander zu verknüpfen, um komplexe Szenarien abzubilden, bietet die APL insbesondere automatisierte ML-Szenarien, wie Klassifikationen, Regressionen, Cluster- oder Zeitreihenanalysen. Außerdem lernen Sie Python-Tools, z. B. das Jupyter Notebook, und Techniken für Text-Mining sowohl in SQL-Script als auch in Python kennen.
Immer wieder werden die Funktionen und Algorithmen am durchgängigen betriebswirtschaftlichen Beispiel einer Abwanderungsanalyse/Kündigungsvorhersage praktisch veranschaulicht. Dabei lernen Sie einzuschätzen, wie Sie diese Techniken für eigene Szenarien einsetzen und etwaige Hürden bei der Implementierung leichter überwinden.
- Predictive Analysis und Automated Predictive Library in SQLScript und Python
- Klassifikations- und Cluster-Analysen
- Explorative Datenanalysen und Machine Learning im Jupyter Notebook
- Text Mining
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.