41,95 €
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
21 °P sammeln
41,95 €
41,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
Als Download kaufen
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
21 °P sammeln
Jetzt verschenken
41,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
  • Format: ePub


This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you''re comfortable with Python and its libraries, including pandas and scikit-learn, you''ll be able to address specific problems, from loading data to training models and leveraging neural networks.
Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion
…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 3.97MB
  • FamilySharing(5)
Produktbeschreibung


This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you''re comfortable with Python and its libraries, including pandas and scikit-learn, you''ll be able to address specific problems, from loading data to training models and leveraging neural networks.

Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context.

Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You''ll find recipes for:

  • Vectors, matrices, and arrays
  • Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources
  • Handling numerical and categorical data, text, images, and dates and times
  • Dimensionality reduction using feature extraction or feature selection
  • Model evaluation and selection
  • Linear and logical regression, trees and forests, and k-nearest neighbors
  • Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models
  • Saving, loading, and serving trained models from multiple frameworks

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Kyle Gallatin is a software engineer for machine learning infrastructure with years of experience as a data analyst, data scientist and machine learning engineer. He is also a professional data science mentor, volunteer computer science teacher and frequently publishes articles at the intersection of software engineering and machine learning. Currently, Kyle is a software engineer on the machine learning platform team at Etsy.