46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
23 °P sammeln
46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
23 °P sammeln
Als Download kaufen
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
23 °P sammeln
Jetzt verschenken
46,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
23 °P sammeln
  • Format: PDF


¿Help readers understand the mathematical interpretation of learning algorithms
Teach the basics of linear algebra, probability, and data distributions and how they are essential in formulating a learning algorithm Help readers construct and modify their own learning algorithms, such as ridge and lasso regression, decision trees, boosted trees, k-nearest neighbors, etc

Produktbeschreibung


¿Help readers understand the mathematical interpretation of learning algorithms

Teach the basics of linear algebra, probability, and data distributions and how they are essential in formulating a learning algorithm
Help readers construct and modify their own learning algorithms, such as ridge and lasso regression, decision trees, boosted trees, k-nearest neighbors, etc



Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Abhijit Ghatak is a Data Scientist and holds an ME in Engineering and MS in Data Science from Stevens Institute of Technology, USA. He started his career as a submarine engineer officer in the Indian Navy and worked on multiple data-intensive projects involving submarine operations and construction. He has worked in academia, technology companies and as a research scientist in the area of Internet of Things (IoT) and pattern recognition for the European Union (EU). He has published in the areas of engineering and machine learning and is presently a consultant in the area of pattern recognition and data analytics. His areas of research include IoT, stream analytics and design of deep learning systems.