42,95 €
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
21 °P sammeln
42,95 €
42,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
Als Download kaufen
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
21 °P sammeln
Jetzt verschenken
42,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
  • Format: PDF

This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML. Once you have learned the concepts, they can be applied to implement algorithms in either…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 20MB
  • FamilySharing(5)
Produktbeschreibung
This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML. Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML. By the end of this book, you will acquire the skills to leverage Spark's features to create your own scalable machine learning applications and power a modern data-driven business.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Rajdeep Dua has over 18 years experience in the cloud and big data space. He has taught Spark and big data at some of the most prestigious tech schools in India: IIIT Hyderabad, ISB, IIIT Delhi, and Pune College of Engineering. He currently leads the developer relations team at Salesforce India. He has also presented BigQuery and Google App Engine at the W3C conference in Hyderabad. He led the developer relations teams at Google, VMware, and Microsoft, and has spoken at hundreds of other conferences on the cloud. Some of the other references to his work can be seen at Your Story and on ACM digital library. His contributions to the open source community relate to Docker, Kubernetes, Android, OpenStack, and Cloud Foundry.