Luiz Octavio Amaral Affonso
Machinery Failure Analysis Handbook (eBook, ePUB)
Sustain Your Operations and Maximize Uptime
86,95 €
86,95 €
inkl. MwSt.
Sofort per Download lieferbar
43 °P sammeln
86,95 €
Als Download kaufen
86,95 €
inkl. MwSt.
Sofort per Download lieferbar
43 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
86,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
43 °P sammeln
Luiz Octavio Amaral Affonso
Machinery Failure Analysis Handbook (eBook, ePUB)
Sustain Your Operations and Maximize Uptime
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Understanding why and how failures occur is critical to failure prevention, because even the slightest breakdown can lead to catastrophic loss of life and asset as well as widespread pollution. This book helps anyone involved with machinery reliability, whether in the design of new plants or the maintenance and operation of existing ones, to understand why process equipment fails and thereby prevent similar failures.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
Heinz P. BlochMachinery Failure Analysis and Troubleshooting (eBook, ePUB)77,95 €
D. R. H. JonesFailure Analysis Case Studies II (eBook, ePUB)149,95 €
Sustainable Biopolymer Composites (eBook, ePUB)160,95 €
Handbook of Materials Failure Analysis With Case Studies from the Construction Industries (eBook, ePUB)135,95 €
Alireza BahadoriThermal Insulation Handbook for the Oil, Gas, and Petrochemical Industries (eBook, ePUB)74,95 €
Handbook of Materials Failure Analysis (eBook, ePUB)135,95 €
John CarltonMarine Propellers and Propulsion (eBook, ePUB)127,95 €-
-
-
Understanding why and how failures occur is critical to failure prevention, because even the slightest breakdown can lead to catastrophic loss of life and asset as well as widespread pollution. This book helps anyone involved with machinery reliability, whether in the design of new plants or the maintenance and operation of existing ones, to understand why process equipment fails and thereby prevent similar failures.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Elsevier Science & Techn.
- Seitenzahl: 308
- Erscheinungstermin: 25. November 2013
- Englisch
- ISBN-13: 9780127999821
- Artikelnr.: 40007065
- Verlag: Elsevier Science & Techn.
- Seitenzahl: 308
- Erscheinungstermin: 25. November 2013
- Englisch
- ISBN-13: 9780127999821
- Artikelnr.: 40007065
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface
Part I Introduction to Failure Analysis
1 Fundamental Causes of Failures
1.1 Design Failures
1.2 Material Selection Deficiencies
1.3 Material Imperfections
1.4 Manufacturing Defects
1.5 Assembly and Installation Errors
1.6 Maintenance and Operation Errors
Conclusion
2 Failure Analysis Practice
2.1 Failure Analysis Objectives
2.2 How Far Should We Go?
2.3 Main Steps
2.4 Reports and Databases
3 Failure Prevention Efforts
3.1 Types of Failure
3.2 Prevention of Failures
3.3 Machinery Monitoring and Anticipatory Action
3.4 Operator's Role in Machinery Reliability
Part II Failure Modes
4 Ductile and Brittle Fractures
4.1 Ductile Fracture Morphology
4.2 Ductile Fracture Mechanism
4.3 Brittle Fracture
4.4 Brittle Fracture Morphology
4.5 Brittle Fracture Mechanism
5 Fatigue Fractures
5.1 Fatigue Fracture Mechanism
5.2 Fatigue Fracture Surface Morphology
5.3 Factors That Influence Fatigue Strength
6 Wear
6.1 Sliding Wear
6.2 Hard Particle Wear
6.3 Liquid Impingement Wear
6.4 Cavitation
7 Corrosion
7.1 Electrochemical Corrosion Mechanism
7.2 Uniform Corrosion
7.3 Corrosion Fatigue
7.4 Pitting Corrosion
7.5 Galvanic Corrosion
7.6 Corrosion Erosion
7.7 Stress Corrosion Cracking
8 Incrustation
8.1 Coke Deposition
8.2 Salt Deposition
8.3 Biological Incrustation
9 Electric Discharge Damage
Part III Machinery Component Failures
10 Shafts
10.1 Stresses Acting on a Shaft
10.2 Fatigue Failures
10.3 Shaft Wear
10.4 Shaft Distortion
11 Hydrodynamic Bearings
11.1 Operation of a Hydrodynamic Bearing
11.2 Hydrodynamic Bearing Construction
11.3 Hydrodynamic Bearing Failure Analysis
11.4 Fatigue Failures
11.5 Bearing Metal Wear
11.6 Corrosion
11.7 Effect of Hard Particles on Bearings
11.8 Effect of Lubrication
11.9 Effect of Temperature
11.10 Effect of Overloads
11.11 Assembly Deficiencies
11.12 Electrical Discharge Damage
11.13 Fabrication-related Failures
11.14 Design-related Failures
12 Antifriction Bearings
12.1 Antifriction Bearing Lubrication
12.2 Antifriction Bearing Design Life
12.3 Contact Patterns on Bearing Races
12.4 Antifriction Bearing Failure Analysis
12.5 Types of Failure
13 Mechanical Seals
13.1 How a Mechanical Seal Works
13.2 Seal Mechanical Design
13.3 Seal Hydrodynamic Design
13.4 P × V
13.5 Sealing System
13.6 Mechanical Seal Failure Analysis
13.7 Face Contact Patterns
13.8 Failure Mechanisms and Causes
13.9 Corrosion of Seal Components
13.10 Mechanical Damage
13.11 Thermal Damage
13.12 Design and Manufacturing Defects
14 Bolts
Part I Introduction to Failure Analysis
1 Fundamental Causes of Failures
1.1 Design Failures
1.2 Material Selection Deficiencies
1.3 Material Imperfections
1.4 Manufacturing Defects
1.5 Assembly and Installation Errors
1.6 Maintenance and Operation Errors
Conclusion
2 Failure Analysis Practice
2.1 Failure Analysis Objectives
2.2 How Far Should We Go?
2.3 Main Steps
2.4 Reports and Databases
3 Failure Prevention Efforts
3.1 Types of Failure
3.2 Prevention of Failures
3.3 Machinery Monitoring and Anticipatory Action
3.4 Operator's Role in Machinery Reliability
Part II Failure Modes
4 Ductile and Brittle Fractures
4.1 Ductile Fracture Morphology
4.2 Ductile Fracture Mechanism
4.3 Brittle Fracture
4.4 Brittle Fracture Morphology
4.5 Brittle Fracture Mechanism
5 Fatigue Fractures
5.1 Fatigue Fracture Mechanism
5.2 Fatigue Fracture Surface Morphology
5.3 Factors That Influence Fatigue Strength
6 Wear
6.1 Sliding Wear
6.2 Hard Particle Wear
6.3 Liquid Impingement Wear
6.4 Cavitation
7 Corrosion
7.1 Electrochemical Corrosion Mechanism
7.2 Uniform Corrosion
7.3 Corrosion Fatigue
7.4 Pitting Corrosion
7.5 Galvanic Corrosion
7.6 Corrosion Erosion
7.7 Stress Corrosion Cracking
8 Incrustation
8.1 Coke Deposition
8.2 Salt Deposition
8.3 Biological Incrustation
9 Electric Discharge Damage
Part III Machinery Component Failures
10 Shafts
10.1 Stresses Acting on a Shaft
10.2 Fatigue Failures
10.3 Shaft Wear
10.4 Shaft Distortion
11 Hydrodynamic Bearings
11.1 Operation of a Hydrodynamic Bearing
11.2 Hydrodynamic Bearing Construction
11.3 Hydrodynamic Bearing Failure Analysis
11.4 Fatigue Failures
11.5 Bearing Metal Wear
11.6 Corrosion
11.7 Effect of Hard Particles on Bearings
11.8 Effect of Lubrication
11.9 Effect of Temperature
11.10 Effect of Overloads
11.11 Assembly Deficiencies
11.12 Electrical Discharge Damage
11.13 Fabrication-related Failures
11.14 Design-related Failures
12 Antifriction Bearings
12.1 Antifriction Bearing Lubrication
12.2 Antifriction Bearing Design Life
12.3 Contact Patterns on Bearing Races
12.4 Antifriction Bearing Failure Analysis
12.5 Types of Failure
13 Mechanical Seals
13.1 How a Mechanical Seal Works
13.2 Seal Mechanical Design
13.3 Seal Hydrodynamic Design
13.4 P × V
13.5 Sealing System
13.6 Mechanical Seal Failure Analysis
13.7 Face Contact Patterns
13.8 Failure Mechanisms and Causes
13.9 Corrosion of Seal Components
13.10 Mechanical Damage
13.11 Thermal Damage
13.12 Design and Manufacturing Defects
14 Bolts
Preface
Part I Introduction to Failure Analysis
1 Fundamental Causes of Failures
1.1 Design Failures
1.2 Material Selection Deficiencies
1.3 Material Imperfections
1.4 Manufacturing Defects
1.5 Assembly and Installation Errors
1.6 Maintenance and Operation Errors
Conclusion
2 Failure Analysis Practice
2.1 Failure Analysis Objectives
2.2 How Far Should We Go?
2.3 Main Steps
2.4 Reports and Databases
3 Failure Prevention Efforts
3.1 Types of Failure
3.2 Prevention of Failures
3.3 Machinery Monitoring and Anticipatory Action
3.4 Operator's Role in Machinery Reliability
Part II Failure Modes
4 Ductile and Brittle Fractures
4.1 Ductile Fracture Morphology
4.2 Ductile Fracture Mechanism
4.3 Brittle Fracture
4.4 Brittle Fracture Morphology
4.5 Brittle Fracture Mechanism
5 Fatigue Fractures
5.1 Fatigue Fracture Mechanism
5.2 Fatigue Fracture Surface Morphology
5.3 Factors That Influence Fatigue Strength
6 Wear
6.1 Sliding Wear
6.2 Hard Particle Wear
6.3 Liquid Impingement Wear
6.4 Cavitation
7 Corrosion
7.1 Electrochemical Corrosion Mechanism
7.2 Uniform Corrosion
7.3 Corrosion Fatigue
7.4 Pitting Corrosion
7.5 Galvanic Corrosion
7.6 Corrosion Erosion
7.7 Stress Corrosion Cracking
8 Incrustation
8.1 Coke Deposition
8.2 Salt Deposition
8.3 Biological Incrustation
9 Electric Discharge Damage
Part III Machinery Component Failures
10 Shafts
10.1 Stresses Acting on a Shaft
10.2 Fatigue Failures
10.3 Shaft Wear
10.4 Shaft Distortion
11 Hydrodynamic Bearings
11.1 Operation of a Hydrodynamic Bearing
11.2 Hydrodynamic Bearing Construction
11.3 Hydrodynamic Bearing Failure Analysis
11.4 Fatigue Failures
11.5 Bearing Metal Wear
11.6 Corrosion
11.7 Effect of Hard Particles on Bearings
11.8 Effect of Lubrication
11.9 Effect of Temperature
11.10 Effect of Overloads
11.11 Assembly Deficiencies
11.12 Electrical Discharge Damage
11.13 Fabrication-related Failures
11.14 Design-related Failures
12 Antifriction Bearings
12.1 Antifriction Bearing Lubrication
12.2 Antifriction Bearing Design Life
12.3 Contact Patterns on Bearing Races
12.4 Antifriction Bearing Failure Analysis
12.5 Types of Failure
13 Mechanical Seals
13.1 How a Mechanical Seal Works
13.2 Seal Mechanical Design
13.3 Seal Hydrodynamic Design
13.4 P × V
13.5 Sealing System
13.6 Mechanical Seal Failure Analysis
13.7 Face Contact Patterns
13.8 Failure Mechanisms and Causes
13.9 Corrosion of Seal Components
13.10 Mechanical Damage
13.11 Thermal Damage
13.12 Design and Manufacturing Defects
14 Bolts
Part I Introduction to Failure Analysis
1 Fundamental Causes of Failures
1.1 Design Failures
1.2 Material Selection Deficiencies
1.3 Material Imperfections
1.4 Manufacturing Defects
1.5 Assembly and Installation Errors
1.6 Maintenance and Operation Errors
Conclusion
2 Failure Analysis Practice
2.1 Failure Analysis Objectives
2.2 How Far Should We Go?
2.3 Main Steps
2.4 Reports and Databases
3 Failure Prevention Efforts
3.1 Types of Failure
3.2 Prevention of Failures
3.3 Machinery Monitoring and Anticipatory Action
3.4 Operator's Role in Machinery Reliability
Part II Failure Modes
4 Ductile and Brittle Fractures
4.1 Ductile Fracture Morphology
4.2 Ductile Fracture Mechanism
4.3 Brittle Fracture
4.4 Brittle Fracture Morphology
4.5 Brittle Fracture Mechanism
5 Fatigue Fractures
5.1 Fatigue Fracture Mechanism
5.2 Fatigue Fracture Surface Morphology
5.3 Factors That Influence Fatigue Strength
6 Wear
6.1 Sliding Wear
6.2 Hard Particle Wear
6.3 Liquid Impingement Wear
6.4 Cavitation
7 Corrosion
7.1 Electrochemical Corrosion Mechanism
7.2 Uniform Corrosion
7.3 Corrosion Fatigue
7.4 Pitting Corrosion
7.5 Galvanic Corrosion
7.6 Corrosion Erosion
7.7 Stress Corrosion Cracking
8 Incrustation
8.1 Coke Deposition
8.2 Salt Deposition
8.3 Biological Incrustation
9 Electric Discharge Damage
Part III Machinery Component Failures
10 Shafts
10.1 Stresses Acting on a Shaft
10.2 Fatigue Failures
10.3 Shaft Wear
10.4 Shaft Distortion
11 Hydrodynamic Bearings
11.1 Operation of a Hydrodynamic Bearing
11.2 Hydrodynamic Bearing Construction
11.3 Hydrodynamic Bearing Failure Analysis
11.4 Fatigue Failures
11.5 Bearing Metal Wear
11.6 Corrosion
11.7 Effect of Hard Particles on Bearings
11.8 Effect of Lubrication
11.9 Effect of Temperature
11.10 Effect of Overloads
11.11 Assembly Deficiencies
11.12 Electrical Discharge Damage
11.13 Fabrication-related Failures
11.14 Design-related Failures
12 Antifriction Bearings
12.1 Antifriction Bearing Lubrication
12.2 Antifriction Bearing Design Life
12.3 Contact Patterns on Bearing Races
12.4 Antifriction Bearing Failure Analysis
12.5 Types of Failure
13 Mechanical Seals
13.1 How a Mechanical Seal Works
13.2 Seal Mechanical Design
13.3 Seal Hydrodynamic Design
13.4 P × V
13.5 Sealing System
13.6 Mechanical Seal Failure Analysis
13.7 Face Contact Patterns
13.8 Failure Mechanisms and Causes
13.9 Corrosion of Seal Components
13.10 Mechanical Damage
13.11 Thermal Damage
13.12 Design and Manufacturing Defects
14 Bolts







