114,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
  • Format: PDF

Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition presents fundamental, classical statistical concepts at the doctorate level. It covers estimation, prediction, testing, confidence sets, Bayesian analysis, and the general approach of decision theory. This edition gives careful proofs of major results and explains ho

Produktbeschreibung
Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition presents fundamental, classical statistical concepts at the doctorate level. It covers estimation, prediction, testing, confidence sets, Bayesian analysis, and the general approach of decision theory. This edition gives careful proofs of major results and explains ho

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Peter J. Bickel is a professor emeritus in the Department of Statistics and a professor in the Graduate School at the University of California, Berkeley. Dr. Bickel is a member of the American Academy of Arts and Sciences and the National Academy of Sciences. He has been a Guggenheim Fellow and MacArthur Fellow, a recipient of the COPSS Presidents' Award, and president of the Bernoulli Society and the Institute of Mathematical Statistics. He holds honorary doctorate degrees from the Hebrew University of Jerusalem and ETH Zurich.

Kjell A. Doksum is a senior scientist in the Department of Statistics at the University of Wisconsin-Madison. His research encompasses the estimation of nonparametric regression and correlation curves, inference for global measures of association in semiparametric and nonparametric settings, the estimation of regression quantiles, statistical modeling and analysis of HIV data, the analysis of financial data, and Bayesian nonparametric inference.

Rezensionen
"These methods are clearly explained by two outstanding statistical practitioners. ... This book is well supported by the references, increasing its value as a guide through the often difficult world of mathematical statistics. ...the authors consider key topics which include asymptotic efficiency in semiparametric models, semiparametric maximum likelihood estimation, proportional hazards regression models and Markov chain Monte Carlo methods."
- Receptos Pharmaceuticals, San Diego, 2016